BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了。
考虑怎么求这个。容易想到容斥,即枚举完全平方数。我们知道莫比乌斯函数就是此种容斥系数。筛出来就可以了。
注意二分时会爆int。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define inf 2000000000
int T,n,prime[N],mobius[N],cnt=;
bool flag[N];
int calc(int n)
{
int s=n;
for (int i=;i*i<=n;i++)
s+=mobius[i]*(n/(i*i));
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2440.in","r",stdin);
freopen("bzoj2440.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
flag[]=;mobius[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,mobius[i]=-;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
mobius[prime[j]*i]=-mobius[i];
}
}
T=read();
while (T--)
{
n=read();
unsigned int l=,r=inf;int ans;
while (l<=r)
{
int mid=l+r>>;
if (calc(mid)>=n) ans=mid,r=mid-;
else l=mid+;
}
cout<<ans<<endl;
}
return ;
}
BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)的更多相关文章
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】
二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- 【BZOJ】2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理+二分)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 我觉得网上很多题解都没说清楚...(还是我太弱了? 首先我们可以将问题转换为判定性问题,即给出 ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 【学术篇】bzoj2440 [中山市选2011]完全平方数
-题目の传送门- 题目大意: 找到第k个无平方因子数. 看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法. 考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个 ...
随机推荐
- Android导入AS工程
AS 导入工程 还得 新建工程贴代码
- Net Core 使用外部登陆提供程序登陆的流程,以及身份认证的流程
在Asp.Net Core 中使用外部登陆(google.微博...) 原文出自Rui Figueiredo的博文<External Login Providers in ASP.NET C ...
- Cloud Container Service experimentation
Cloud Container Service experimentation K8S技术社区 举办云容器技术动手工作坊 活动时间:2018年1月13日(周六)13:30-17:30 活动地点:北京海 ...
- 大数据入门第二十二天——spark(二)RDD算子(2)与spark其它特性
一.JdbcRDD与关系型数据库交互 虽然略显鸡肋,但这里还是记录一下(点开JdbcRDD可以看到限制比较死,基本是鸡肋.但好在我们可以通过自定义的JdbcRDD来帮助我们完成与关系型数据库的交互.这 ...
- [清华集训2015 Day2]矩阵变换-[稳定婚姻模型]
Description 给出一个N行M列的矩阵,保证满足以下性质: M>N. 矩阵中每个数都是 [0,N]中的自然数. 每行中, [1,N]中每个自然数刚好出现一次,其余的都是0. 每列中,[1 ...
- 我的SQL SERVER数据库会装满吗?
概述 今天有个客户问我一个蛮有意思的问题.我使用的SQL SERVER 2008数据库,目前数据库130多G,其中某个表的记录条数就有3亿1千多万,占用了50多G.那SQL SERVER 数据库中的表 ...
- EditText点击出现光标但不弹出软键盘
3.0以下版本可以用editText.setInputType(InputType.TYPE_NULL)来实现.或者设置editText.setKeyListener(null)来实现. 3.0以上版 ...
- Asp.Net_<asp:RadioButtonList
<asp:RadioButtonList runat="server" ID="RadioButtonList1" RepeatDirection ...
- DVWA渗透测试系列 一 (DVWA环境配置)
DVWA介绍: DVWA是一个渗透测试靶机系统. DVWA具有十个模块:分别是 Brute Force(暴力破解).Command Injection(命令行注入).CSRF(跨站请求伪造).File ...
- 日本厚劳省对IT技术人员展开确保海外人才调查
新浪美股讯 5月13日消息,共同社报道,日本厚生劳动省将开始对在国内工作的外国籍系统工程师(SE)及程序员的劳动条件进行实际状况调查.为避免在与海外的人才获取竞争中败北,希望掌握接纳企业的需求等推动企 ...