StanFord ML 笔记 第一部分
本章节内容:
1.学习的种类及举例
2.线性回归,拟合一次函数
3.线性回归的方法:
A.梯度下降法--->>>批量梯度下降、随机梯度下降
B.局部线性回归
C.用概率证明损失函数(极大似然函数)
监督学习:有实际的输入和输出,给出标准答案做参照。比如:回归的运算,下面有例子。
非监督学习:内有标准答案,靠自己去计算。比如:聚类。
梯度下降法:
注释:以下直接复制Stanford课程的一位同学评论:super萝卜 [网易北京市海淀区网友]。
m代表训练样本的数量,number of training examples; n代表特征的数量(如房屋估价问题中房屋面积,卧室数量为特征,则n=2); x代表输入变量或者特征,input variables/features; y代表输出变量或目标变量,output variable/target ; variable; (x,y)代表一个样本
梯度下降的结果有时依赖于参数的初始值。(局部最优问题) 梯度下降法: θj := θj − α ∂(J(θ))/∂θj α:学习速率,控制收敛的速度,过小则需要花费太多时间收敛,过大则可能会跳过最小值部分。 当你接近局部最小值的时候,步子会越来越小,最终直到收敛,当达到局部最小值的时候,梯度值也会为0,所以当越来越接近局部最小值的时候,梯度值也是越来越小,梯度下降的步子也会越来越小。 检测收敛的方法:比较两次迭代的结果,看两次结果是否变化很多,最常见的还是检测J(θ)函数的值,如果该值没有很大变化,则认为达到收敛的效果。 梯度下降算法中,计算的梯度(偏导),事实上已经是梯度变化最大的方向。 随机梯度下降法:(大数据集合情况下) 并不会精确的收敛到全局最小值。会在最小值周围徘徊,得到近似的全局最小值。
Batch Gradient Descent ——批量梯度下降算法,每次迭代都会遍历整个训练集;不适于数据集很大。 stochastic gradient descent——随机梯度下降算法,每次迭代只会使用训练集的一个样本,比较快,不会精确的收敛到全局的最小值,在最小值附近徘徊。
gradient descent梯度下降 batch gradient descent 批梯度下降 stochastic gradient descent随机梯度下降(incremental gradient descent增量梯度下降):是对批梯度下降的一种改进,可以不必遍历所有的样本而得出收敛量,速度较快;缺点是无法得出精确的全局最小值;但是得出的收敛值很接近全局最小值,这对我们而言已经足够。
如何检测收敛,一种是检验两次迭代,看两次迭代中是否改变了很多。更多的是检验的值,如果视图最小化的量,不再发生大的改变,就可以认为收敛了。
局部线性回归:
回忆一下高斯滤波比均值滤波的好处?第一:局部性。第二:空间性。局部性在于距离太远就等于没有权重W=0,空间性在于不同的距离权重不一样。
这篇博文讲的很清楚:http://blog.csdn.net/allenalex/article/details/16370245

中心极限定理:
设随机变量X1,X2,......Xn,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ20(k=1,2....),则对任意x,分布函数都符合正太分布。
该定理说明,当n很大时,随机变量
近似地服从标准正态分布N(0,1)。
这里的作用是判断一个模型是否可以符合正太分布,下面课程的房价是一个不固定的因素受到天气、人的心情、道路等。。。因素影响,且这些特征都是独立的,所以可以把房价模型假设为正太分布,同时房价-预测=误差,那么误差也就是满足正太N(0,1)分布了。
似然函数:
应用在概率函数中,其实和概率函数差不多,就是一个数产生的概率函数,比如:

引申到“最大似然函数”:就是求最大概率下的参数。
知乎上这个解释感觉很完美:















StanFord ML 笔记 第一部分的更多相关文章
- StanFord ML 笔记 第三部分
第三部分: 1.指数分布族 2.高斯分布--->>>最小二乘法 3.泊松分布--->>>线性回归 4.Softmax回归 指数分布族: 结合Ng的课程,在看这篇博文 ...
- StanFord ML 笔记 第九部分
第九部分: 1.高斯混合模型 2.EM算法的认知 1.高斯混合模型 之前博文已经说明:http://www.cnblogs.com/wjy-lulu/p/7009038.html 2.EM算法的认知 ...
- StanFord ML 笔记 第八部分
第八部分内容: 1.正则化Regularization 2.在线学习(Online Learning) 3.ML 经验 1.正则化Regularization 1.1通俗解释 引用知乎作者:刑无刀 ...
- StanFord ML 笔记 第六部分&&第七部分
第六部分内容: 1.偏差/方差(Bias/variance) 2.经验风险最小化(Empirical Risk Minization,ERM) 3.联合界(Union bound) 4.一致收敛(Un ...
- StanFord ML 笔记 第五部分
1.朴素贝叶斯的多项式事件模型: 趁热打铁,直接看图理解模型的意思:具体求解可见下面大神给的例子,我这个是流程图. 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate ...
- StanFord ML 笔记 第十部分
第十部分: 1.PCA降维 2.LDA 注释:一直看理论感觉坚持不了,现在进行<机器学习实战>的边写代码边看理论
- StanFord ML 笔记 第四部分
第四部分: 1.生成学习法 generate learning algorithm 2.高斯判别分析 Gaussian Discriminant Analysis 3.朴素贝叶斯 Navie Baye ...
- StanFord ML 笔记 第二部分
本章内容: 1.逻辑分类与回归 sigmoid函数概率证明---->>>回归 2.感知机的学习策略 3.牛顿法优化 4.Hessian矩阵 牛顿法优化求解: 这个我就不记录了,看到一 ...
- 《javascript权威指南》读书笔记——第一篇
<javascript权威指南>读书笔记——第一篇 金刚 javascript js javascript权威指南 由于最近想系统学习下javascript,所以开始在kindle上看这本 ...
随机推荐
- 深入理解ASP.NET MVC(8)
系列目录 过滤器上下文参数 前一节提到了四种MVC内建过滤器,它们无一例外都在关键的方法中提供了叫filterContext的参数,尽管它们各自类型不同,但是都继承自ControllerContext ...
- kafka重复数据问题排查记录
问题 向kafka写数据,然后读kafka数据,生产的数据量和消费的数据量对不上. 开始怀疑人生,以前奠定的基础受到挑战... 原来的测试为什么没有覆盖生产量和消费量的对比? 消费者写的有问题?反复检 ...
- Linux CentOS6升级glibc库过程
CentOS6升级glibc库过程 hadoop无法加载native库,可能原因是 glibc库版本过低,需要升级. 第一:安装以下软件 yum -y install zlib zlib-devel ...
- 利用JavaFx开发RIA桌面应用-事件监听
1 事件监听 最近利用javaFX开发桌面客户端,碰到需要给各种UI控件添加事件监听,在这里做一个简单的小结,供日后参考. 2 分类处理 在JavaGUI 和Android中,事件通常通过实现list ...
- .net 读取/保存 文件 到 局域网 服务器
public class IdentityScope : IDisposable { /// <summary> /// 登录一个新用户 /// </summary> /// ...
- 基于OLSR的路由协议实现Ad-Hoc组网
一.软件包的安装 1. olsrd软件包的安装 libpthread_0.9.33.2-1_ar71xx.ipk olsrd_0.6.6.2-4_ar71xx.ipk 2. luci的安装 olsrd ...
- windows的消息传递--消息盒子
例如对windows发消息让文本选中. SendMessage(Text1.hwnd,EM_GETSEL,0,-1 ); EC_LEFTMARGIN(&H1) EC_USEFONTIN ...
- 无后缀名伪静态路径在IIS7.0的网站提示 "404 - File or directory not found"
新配置服务器(windows server 2008,not sp1) 经测试情况如下: ①无后缀名伪静态路径行在IIS7.0的网站提示 ”404 - File or directory not fo ...
- ALGO-117_蓝桥杯_算法训练_友好数
问题描述 有两个整数,如果每个整数的约数和(除了它本身以外)等于对方,我们就称这对数是友好的.例如: 9的约数和有:+= 4的约数和有:+= 所以9和4不是友好的. 220的约数和有: = 284的约 ...
- 1123.(重、错)Is It a Complete AVL Tree
题意:给定结点个数n和插入序列,判断构造的AVL树是否是完全二叉树? 思路:AVL树的建立很简单.而如何判断是不是完全二叉树呢?通过层序遍历进行判断:当一个结点的孩子结点为空时,则此后就不能有新的结点 ...