题目链接

树形DP,考虑子节点对父节点的贡献。

设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值。

由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前i棵子树花费为j能贡献给x的最大价值。

那么 \(g[i][j] = max{g[i-1][j-k]+f[v][l*need[x]][k]}\)。\(need[x]\)为x需要子节点v的个数,\(l\)为合成x的个数,这个同样需要枚举。

那么对于每个\(l\),可以枚举用多少个x合成上一层,更新f,即 \(f[x][i][j] = max{g[all][j]+val[x]*(l-i)}\)。(\(g\)已经是要求合成\(l\)个x的价值)

处理完一棵子树,就可以简单地背包一下最大价值了。。

g[][]确实可以用一维,但是就不能进一步优化了,而且避免不了每次memset。(优化相当明显)

费用流显然做不了嘛。。

优化后:43108kb 1100ms

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=53,M=2002,INF=0x3f3f3f3f; int n,m,Enum,H[N],nxt[N],to[N],need[N],dgr[N],val[N],cost[N],num[N],Ans[M],f[N][101][M],g[N][M]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w){
++dgr[v], to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, need[Enum]=w;
}
void dfs(int x)
{
if(!H[x]){
num[x]=std::min(num[x],m/cost[x]);
for(int i=0; i<=num[x]; ++i)
for(int j=i; j<=num[x]; ++j)//限制不是 j*cost[x]<=m。。还有num[]限制。
f[x][i][j*cost[x]]=(j-i)*val[x];
return;
}
num[x]=100;
for(int i=H[x]; i; i=nxt[i])
dfs(to[i]), num[x]=std::min(num[x],num[to[i]]/need[i]), cost[x]+=need[i]*cost[to[i]];
num[x]=std::min(num[x],m/cost[x]);
memset(g,-0x3f,sizeof g);
g[0][0]=0;
for(int now,l=num[x]; ~l; --l)//当前要合成l个
{
now=0;
for(int i=H[x],v=to[i],w=l*need[i]; i; i=nxt[i],v=to[i],w=l*need[i],++now)
for(int j=0; j<=m; ++j)
if(g[now][j]>=0)//这个优化很有效
for(int k=0; k+j<=m; ++k)//g[0][..]不会被更新了,每次一定是由之前合法的转移来
g[now+1][j+k]=std::max(g[now+1][j+k],g[now][j]+f[v][w][k]);
for(int i=0; i<=l; ++i)
for(int j=0; j<=m; ++j)
f[x][i][j]=std::max(f[x][i][j],g[now][j]+(l-i)*val[x]);//不需要再枚举k用g[k]更新f[j-k],f只是由g[]转移来,且只能从当前g[]转移。
}
} int main()
{
n=read(),m=read();
char s[3];
for(int x,v,i=1; i<=n; ++i)
{
val[i]=read(), scanf("%s",s);
if(s[0]=='A'){
x=read();
while(x--) v=read(),AddEdge(i,v,read());
}
else cost[i]=read(),num[i]=read();
}
memset(f,-0x3f,sizeof f);//会有非法状态。
for(int i=1; i<=n; ++i)
if(!dgr[i])
{
dfs(i);
for(int j=m; j; --j)
for(int k=1; k<=j; ++k)
Ans[j]=std::max(Ans[j],Ans[j-k]+f[i][0][k]);//根节点从f[i][0]转移就好了。
}
printf("%d",Ans[m]);
return 0;
}

优化前:42700kb 6968ms

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=53,M=2002,INF=0x3f3f3f3f; int n,m,Enum,H[N],nxt[N],to[N],need[N],dgr[N],val[N],cost[N],num[N],Ans[M],f[N][101][M],g[M]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w){
++dgr[v], to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, need[Enum]=w;
}
void dfs(int x)
{
if(!H[x]){
num[x]=std::min(num[x],m/cost[x]);
for(int i=0; i<=num[x]; ++i)
for(int j=i; j<=num[x]; ++j)//限制不是 j*cost[x]<=m。。还有num[]限制。
f[x][i][j*cost[x]]=(j-i)*val[x];
return;
}
num[x]=100;
for(int i=H[x]; i; i=nxt[i])
dfs(to[i]), num[x]=std::min(num[x],num[to[i]]/need[i]), cost[x]+=need[i]*cost[to[i]];
num[x]=std::min(num[x],m/cost[x]);
for(int l=num[x]; ~l; --l)//当前要合成l个
{//g[]不需要再清空了吧,数量递减g[]一定是递增的。当然这么写本来也不需要。
memset(g,-0x3f,sizeof g);//然而必须要清空。。之后的g[j]可能被之前本应非法-INF的g[j-k]给更新了。。
g[0]=0;//necessary
for(int i=H[x]; i; i=nxt[i])
for(int j=m; ~j; --j)//这要更新到0!(DP g[]的初始值)
{
int tmp=-INF;
for(int k=0; k<=j; ++k)
tmp=std::max(tmp,g[j-k]+f[to[i]][l*need[i]][k]);
g[j]=tmp;
}
for(int i=0; i<=l; ++i)
for(int j=0; j<=m; ++j)
f[x][i][j]=std::max(f[x][i][j],g[j]+(l-i)*val[x]);//不需要再枚举k用g[k]更新f[j-k],f只是由g[]转移来,且只能从当前g[]转移。
}
} int main()
{
n=read(),m=read();
char s[3];
for(int x,v,i=1; i<=n; ++i)
{
val[i]=read(), scanf("%s",s);
if(s[0]=='A'){
x=read();
while(x--) v=read(),AddEdge(i,v,read());
}
else cost[i]=read(),num[i]=read();
}
memset(f,-0x3f,sizeof f);//会有非法状态。
for(int i=1; i<=n; ++i)
if(!dgr[i])
{
dfs(i);
for(int j=m; j; --j)
for(int k=1; k<=j; ++k)
Ans[j]=std::max(Ans[j],Ans[j-k]+f[i][0][k]);//根节点从f[i][0]转移就好了。
}
printf("%d",Ans[m]);
return 0;
}

BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)的更多相关文章

  1. bzoj 1017: [JSOI2008]魔兽地图DotR【树形dp+背包】

    bzoj上是一个森林啊--? dp还是太弱了 设f[i][j][k]为到点i,合成j个i并且花费k金币能获得的最大力量值,a[i]为数量上限,b[i]为价格,p[i]为装备力量值 其实这个状态设计出来 ...

  2. bzoj 1017 : [JSOI2008]魔兽地图DotR

    比较难想的的一道树形dp. 看到这道题正常的思路应该是$f[i][j][k]$表示i这棵子树里买了j个i物品花费为k的最大收益. 但如果直接这么定义的话转移复杂度会很高,需要枚举j,枚举孩子,枚举k, ...

  3. 1017: [JSOI2008]魔兽地图DotR - BZOJ

    Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...

  4. [JSOI2008]魔兽地图(树形dp)

    DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Ancients) Allst ...

  5. [luogu4037 JSOI2008] 魔兽地图 (树形dp)

    传送门 Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the ...

  6. [BZOJ1017][JSOI2008]魔兽地图DotR 树形dp

    1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2597  Solved: 1010[Submit][ ...

  7. BZOJ [JSOI2008]魔兽地图DotR

    1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1243  Solved: 532[Submit][S ...

  8. 【bzoj1017】[JSOI2008]魔兽地图DotR

    1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1658  Solved: 755[Submit][S ...

  9. 【BZOJ1017】[JSOI2008]魔兽地图(动态规划)

    [BZOJ1017][JSOI2008]魔兽地图(动态规划) 题面 BZOJ 洛谷 题解 状态设一下,\(f[i][j][k]\)表示第\(i\)个物品,有\(j\)个用于合成,总花费为\(k\)的最 ...

随机推荐

  1. HttpDebug下载

    话不多说,早就有了这个,有一天公司地址有限制,网盘访问不了,看见很多博客园上的下载都需要积分,忍不了就发出来共享吧! HttpDebug下载: https://files.cnblogs.com/fi ...

  2. C语言复习---二维数组和二级指针的关系:没关系,别瞎想(重点)

    前提:一维数组和一维指针为什么可以替换使用? ] = { , , }; int *p = a; ; i < ; i++) printf("%d ", *(p + i)); 上 ...

  3. angular.module()参数问题

    var app = angular.module('myApp', []); 第二个参数是依赖的模块,因为这里不需要依赖其它模块,因此为空,但是[]不能省略.

  4. SQL记录-PLSQL日期与时间

    PL/SQL日期及时间 PL/SQL提供两个日期和时间相关的数据类型: 日期时间(Datetime)数据类型 间隔数据类型 datetime数据类型有: DATE TIMESTAMP TIMESTAM ...

  5. python学习笔记7-网络编程

    import urllib.request import json,requests #urlib模块,不常用 url = 'http://api.nnzhp.cn/api/user/stu_info ...

  6. Linux - awk 文本处理工具六 - 日志关键字筛选

    查看多少行 ? awk '{print NR}' access.log |tail -n1 日期时间筛选检测 awk '/Dec 10/ {print $0}' /opt/mongod/log/mon ...

  7. C 语言结构体之点运算符( . )和箭头运算符( -> )的区别

    很多时候,在对结构体进行相应的编码时,时而发现是用点运算符( . ),时而是用箭头运算符( -> ):那么这两者之间的使用有什么区别么? 相同点:两者都是二元操作符,而且右边的操作数都是成员的名 ...

  8. Manacher's Algorithm 马拉车算法(求最长回文串)

    作用:求一个字符串中的最长子串,同时还可以求所有子串的长度. 题目链接: https://vjudge.net/contest/254692#problem/B 最长回文串长度的代码: int Man ...

  9. House Robber I & II & III

    House Robber You are a professional robber planning to rob houses along a street. Each house has a c ...

  10. c#调用c++ dll 入坑记录

    1.DLL引用坑 [DllImport("NetDLL.dll", CharSet = CharSet.Ansi, CallingConvention = CallingConve ...