BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)
树形DP,考虑子节点对父节点的贡献。
设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值。
由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前i棵子树花费为j能贡献给x的最大价值。
那么 \(g[i][j] = max{g[i-1][j-k]+f[v][l*need[x]][k]}\)。\(need[x]\)为x需要子节点v的个数,\(l\)为合成x的个数,这个同样需要枚举。
那么对于每个\(l\),可以枚举用多少个x合成上一层,更新f,即 \(f[x][i][j] = max{g[all][j]+val[x]*(l-i)}\)。(\(g\)已经是要求合成\(l\)个x的价值)
处理完一棵子树,就可以简单地背包一下最大价值了。。
g[][]确实可以用一维,但是就不能进一步优化了,而且避免不了每次memset。(优化相当明显)
费用流显然做不了嘛。。
优化后:43108kb 1100ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=53,M=2002,INF=0x3f3f3f3f;
int n,m,Enum,H[N],nxt[N],to[N],need[N],dgr[N],val[N],cost[N],num[N],Ans[M],f[N][101][M],g[N][M];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w){
++dgr[v], to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, need[Enum]=w;
}
void dfs(int x)
{
if(!H[x]){
num[x]=std::min(num[x],m/cost[x]);
for(int i=0; i<=num[x]; ++i)
for(int j=i; j<=num[x]; ++j)//限制不是 j*cost[x]<=m。。还有num[]限制。
f[x][i][j*cost[x]]=(j-i)*val[x];
return;
}
num[x]=100;
for(int i=H[x]; i; i=nxt[i])
dfs(to[i]), num[x]=std::min(num[x],num[to[i]]/need[i]), cost[x]+=need[i]*cost[to[i]];
num[x]=std::min(num[x],m/cost[x]);
memset(g,-0x3f,sizeof g);
g[0][0]=0;
for(int now,l=num[x]; ~l; --l)//当前要合成l个
{
now=0;
for(int i=H[x],v=to[i],w=l*need[i]; i; i=nxt[i],v=to[i],w=l*need[i],++now)
for(int j=0; j<=m; ++j)
if(g[now][j]>=0)//这个优化很有效
for(int k=0; k+j<=m; ++k)//g[0][..]不会被更新了,每次一定是由之前合法的转移来
g[now+1][j+k]=std::max(g[now+1][j+k],g[now][j]+f[v][w][k]);
for(int i=0; i<=l; ++i)
for(int j=0; j<=m; ++j)
f[x][i][j]=std::max(f[x][i][j],g[now][j]+(l-i)*val[x]);//不需要再枚举k用g[k]更新f[j-k],f只是由g[]转移来,且只能从当前g[]转移。
}
}
int main()
{
n=read(),m=read();
char s[3];
for(int x,v,i=1; i<=n; ++i)
{
val[i]=read(), scanf("%s",s);
if(s[0]=='A'){
x=read();
while(x--) v=read(),AddEdge(i,v,read());
}
else cost[i]=read(),num[i]=read();
}
memset(f,-0x3f,sizeof f);//会有非法状态。
for(int i=1; i<=n; ++i)
if(!dgr[i])
{
dfs(i);
for(int j=m; j; --j)
for(int k=1; k<=j; ++k)
Ans[j]=std::max(Ans[j],Ans[j-k]+f[i][0][k]);//根节点从f[i][0]转移就好了。
}
printf("%d",Ans[m]);
return 0;
}
优化前:42700kb 6968ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=53,M=2002,INF=0x3f3f3f3f;
int n,m,Enum,H[N],nxt[N],to[N],need[N],dgr[N],val[N],cost[N],num[N],Ans[M],f[N][101][M],g[M];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w){
++dgr[v], to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, need[Enum]=w;
}
void dfs(int x)
{
if(!H[x]){
num[x]=std::min(num[x],m/cost[x]);
for(int i=0; i<=num[x]; ++i)
for(int j=i; j<=num[x]; ++j)//限制不是 j*cost[x]<=m。。还有num[]限制。
f[x][i][j*cost[x]]=(j-i)*val[x];
return;
}
num[x]=100;
for(int i=H[x]; i; i=nxt[i])
dfs(to[i]), num[x]=std::min(num[x],num[to[i]]/need[i]), cost[x]+=need[i]*cost[to[i]];
num[x]=std::min(num[x],m/cost[x]);
for(int l=num[x]; ~l; --l)//当前要合成l个
{//g[]不需要再清空了吧,数量递减g[]一定是递增的。当然这么写本来也不需要。
memset(g,-0x3f,sizeof g);//然而必须要清空。。之后的g[j]可能被之前本应非法-INF的g[j-k]给更新了。。
g[0]=0;//necessary
for(int i=H[x]; i; i=nxt[i])
for(int j=m; ~j; --j)//这要更新到0!(DP g[]的初始值)
{
int tmp=-INF;
for(int k=0; k<=j; ++k)
tmp=std::max(tmp,g[j-k]+f[to[i]][l*need[i]][k]);
g[j]=tmp;
}
for(int i=0; i<=l; ++i)
for(int j=0; j<=m; ++j)
f[x][i][j]=std::max(f[x][i][j],g[j]+(l-i)*val[x]);//不需要再枚举k用g[k]更新f[j-k],f只是由g[]转移来,且只能从当前g[]转移。
}
}
int main()
{
n=read(),m=read();
char s[3];
for(int x,v,i=1; i<=n; ++i)
{
val[i]=read(), scanf("%s",s);
if(s[0]=='A'){
x=read();
while(x--) v=read(),AddEdge(i,v,read());
}
else cost[i]=read(),num[i]=read();
}
memset(f,-0x3f,sizeof f);//会有非法状态。
for(int i=1; i<=n; ++i)
if(!dgr[i])
{
dfs(i);
for(int j=m; j; --j)
for(int k=1; k<=j; ++k)
Ans[j]=std::max(Ans[j],Ans[j-k]+f[i][0][k]);//根节点从f[i][0]转移就好了。
}
printf("%d",Ans[m]);
return 0;
}
BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)的更多相关文章
- bzoj 1017: [JSOI2008]魔兽地图DotR【树形dp+背包】
bzoj上是一个森林啊--? dp还是太弱了 设f[i][j][k]为到点i,合成j个i并且花费k金币能获得的最大力量值,a[i]为数量上限,b[i]为价格,p[i]为装备力量值 其实这个状态设计出来 ...
- bzoj 1017 : [JSOI2008]魔兽地图DotR
比较难想的的一道树形dp. 看到这道题正常的思路应该是$f[i][j][k]$表示i这棵子树里买了j个i物品花费为k的最大收益. 但如果直接这么定义的话转移复杂度会很高,需要枚举j,枚举孩子,枚举k, ...
- 1017: [JSOI2008]魔兽地图DotR - BZOJ
Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...
- [JSOI2008]魔兽地图(树形dp)
DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Ancients) Allst ...
- [luogu4037 JSOI2008] 魔兽地图 (树形dp)
传送门 Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the ...
- [BZOJ1017][JSOI2008]魔兽地图DotR 树形dp
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2597 Solved: 1010[Submit][ ...
- BZOJ [JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1243 Solved: 532[Submit][S ...
- 【bzoj1017】[JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1658 Solved: 755[Submit][S ...
- 【BZOJ1017】[JSOI2008]魔兽地图(动态规划)
[BZOJ1017][JSOI2008]魔兽地图(动态规划) 题面 BZOJ 洛谷 题解 状态设一下,\(f[i][j][k]\)表示第\(i\)个物品,有\(j\)个用于合成,总花费为\(k\)的最 ...
随机推荐
- Linux quotacheck失败
我找了多少个帖子才发现解决这个问题的啊...最终还是靠FQ找的这位大佬的文章 http://www.2daygeek.com/quotacheck-error/# 当我在执行quotacheck - ...
- Linux让git记住账号密码
Linux让git记住账号密码 ——IT唐伯虎 摘要: Linux让git记住账号密码. 1.进入根目录,指令:cd / 2.创建记录账号密码的文件,指令:touch .git-credentials ...
- node.js通过edge访问.net动态链接库
从了解node.js到现在经历了几个月时间,一直忙于实际的项目,没有动手写点关于node.js的代码.最近将开发工作安排就绪,个人的时间相对从容了,所以这几天开始测试一下node.js. 多年来,一直 ...
- 洛谷P3389 【模板】高斯消元法(+判断是否唯一解)
https://www.luogu.org/problemnew/show/P3389 这里主要说说怎么判断不存在唯一解 我们把每一行的第一个非零元称为关键元 枚举到一个变量,如果剩下的行中该变量的系 ...
- 20155226 2016-2017-2 《Java程序设计》第6周学习总结
20155226 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 第十章 输入/输出 10.1 InputStream与OutputStream 1 . 串流 ...
- shell邮件发送功能实现
本文中以163邮箱为例,测试shell邮件发送功能.常见的工具有:mailx.sendmail.mutt等. 1.设置邮件客户端 (1)启用pop3.smtp服务,以支持第三方客户端支持 (2)设置授 ...
- 打包部署到tomcat
部署到tomcat的方法 注意:在eclipse 或 idea 上需要引入外部tomcat 1.将程序打成war包启动tomcat 2.将target 文件下内容压缩城zip,发布到tomcat RO ...
- C#排队处理DEMO
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- oracle任务job
1)创建测试表 1 create table test1(a date); 2)创建存储过程 1 2 3 4 5 create or replace procedure myproc as begin ...
- Codeforces 600E - Lomsat gelral 「$Dsu \ on \ tree$模板」
With $Dsu \ on \ tree$ we can answer queries of this type: How many vertices in the subtree of verte ...