题目

题意:求 点s 到 点t 的 第 k 短 路的距离;

估价函数=当前值+当前位置到终点的距离

f(n)=g(n)+h(n);     g(n)表示g当前从s到p所走的路径的长度,      h(n)‘启发式函数’,表示为终点t到其余一点p的路径长度;

(1)将有向图的所有边反向,以原终点t为源点,求解t到所有点的最短距离; 

(2)新建一个优先队列,将源点s加入到队列中; 

(3)从优先级队列中弹出f(p)最小的点p,如果点p就是t,则计算t出队的次数; 

如果当前为t的第k次出队,则当前路径的长度就是s到t的第k短路的长度,算法结束; 

否则遍历与p相连的所有的边,将扩展出的到p的邻接点信息加入到优先级队列;

#include <iostream>
#include <cstdio>
#include <queue>
#include <vector>
using namespace std; const int Maxn = 10010;
const int INF = 1e9; struct node{
int to,val;
node(){}
node(int a,int b)
{
to = a; val = b;
}
}; vector<node> adj[Maxn],_adj[Maxn]; int n,m,k;
bool vis[Maxn];
int dis[Maxn]; void AddEdge(int x,int y,int val)
{
adj[x].push_back(node(y,val));
_adj[y].push_back(node(x,val));//反向存图
}
void Dijkstra(int s,int t)
{
priority_queue<int, vector<int>,greater<int> > q;
while(!q.empty()) q.pop();
for(int i=1;i<=n;i++)
vis[i]=false,dis[i]=INF;
vis[t]=true;dis[t]=0;q.push(t);
int u,len;
while(!q.empty())
{
u = q.top(); q.pop();
len = _adj[u].size();
for(int i=0;i<len;i++)
{
node v = _adj[u][i];
if(dis[v.to]>dis[u]+v.val)
{
dis[v.to]=dis[u]+v.val;
if(!vis[v.to])
{
q.push(v.to);
vis[v.to]=true;
}
}
}
vis[u]= false;
}
}
struct Anode{
int h,g,id;
Anode(int a,int b,int c){h=a;g=b;id=c;}
bool operator < (Anode a) const{
return h+g > a.h + a.g;
}
};
priority_queue<Anode> Q;
int Astar(int s,int t) //A*算法
{
while(!Q.empty()) Q.pop();
Q.push(Anode(0,dis[s],s));
int len,num;
num=0;
while(!Q.empty())
{
Anode u = Q.top();
Q.pop();
if(u.id==t) ++num;
if(num>=k) return u.h;
len = adj[u.id].size();
for(int i=0;i<len;i++)
{
node v = adj[u.id][i];
Q.push(Anode(u.h+v.val,dis[v.to],v.to));
}
}
return -1;
}
int main()
{
while(scanf("%d%d",&n,&m)!=-1)
{
for(int i=0;i<Maxn;i++)
adj[i].clear(),_adj[i].clear();
int x,y,v,s,t;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&v);
AddEdge(x,y,v);
}
scanf("%d%d%d",&s,&t,&k);
if(s==t) k++;
Dijkstra(s,t);
printf("%d\n",Astar(s,t));
}
return 0;
}
/*
2 2
1 2 5
2 1 4
1 2 2
*/

poj 2449 Remmarguts' Date【第K短路】的更多相关文章

  1. poj 2449 Remmarguts' Date (k短路模板)

    Remmarguts' Date http://poj.org/problem?id=2449 Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  2. POJ 2449 - Remmarguts' Date - [第k短路模板题][优先队列BFS]

    题目链接:http://poj.org/problem?id=2449 Time Limit: 4000MS Memory Limit: 65536K Description "Good m ...

  3. poj 2449 Remmarguts' Date 第k短路 (最短路变形)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 33606   Accepted: 9116 ...

  4. poj 2449 Remmarguts' Date(K短路,A*算法)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013081425/article/details/26729375 http://poj.org/ ...

  5. POJ 2449 Remmarguts' Date ( 第 k 短路 && A*算法 )

    题意 : 给出一个有向图.求起点 s 到终点 t 的第 k 短路.不存在则输出 -1 #include<stdio.h> #include<string.h> #include ...

  6. 【POJ】2449 Remmarguts' Date(k短路)

    http://poj.org/problem?id=2449 不会.. 百度学习.. 恩. k短路不难理解的. 结合了a_star的思想.每动一次进行一次估价,然后找最小的(此时的最短路)然后累计到k ...

  7. 【POJ】2449.Remmarguts' Date(K短路 n log n + k log k + m算法,非A*,论文算法)

    题解 (搬运一个原来博客的论文题) 抱着板题的心情去,结果有大坑 就是S == T的时候也一定要走,++K 我发现按照论文写得\(O(n \log n + m + k \ log k)\)算法没有玄学 ...

  8. poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)

    http://poj.org/problem?id=2449 Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  9. poj 2449 Remmarguts' Date K短路+A*

    题目链接:http://poj.org/problem?id=2449 "Good man never makes girls wait or breaks an appointment!& ...

  10. 图论(A*算法,K短路) :POJ 2449 Remmarguts' Date

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 ...

随机推荐

  1. do_something方法解析

    /** * 运行任务 * @param $interval * @return bool */ static public function do_something($interval) { //是 ...

  2. Luogu 4234 最小差值生成树 - LCT 维护链信息

    Solution 将边从小到大排序, 添新边$(u, v)$时 若$u,v$不连通则直接添, 若连通则 把链上最小的边去掉 再添边. 若已经加入了 $N - 1$条边则更新答案. Code #incl ...

  3. 英国BBC出的这套中国风海报,设计美哭了!

    “中国风”在国际上已经不是“小众”了 之前分享过好莱坞电影的中国风海报 没想到国外的电视剧也看上了中国市场 没错就是英国BBC的最长寿科幻剧—— <神秘博士Doctor Who> 前段时间 ...

  4. How to execute sudo command in remote host via SSH

    Question: I have an interactive shell script, that at one place needs to ssh to another machine (Ubu ...

  5. [ES]elasticsearch章2 ES查询过程解析

    es服务端是准确知道每个document分布在哪个shard上: search一个比较复杂的执行模式,因为我们不知道那些document会被匹配到,任何一个shard上都有可能,所以一个search请 ...

  6. Vue修饰符

    为了方便大家写代码,vue.js给大家提供了很多方便的修饰符,比如我们经常用到的取消冒泡,阻止默认事件等等~ 目录 表单修饰符 事件修饰符 鼠标按键修饰符 键值修饰符 v-bind修饰符(实在不知道叫 ...

  7. 使用Apache CXF和Spring集成创建Web Service(zz)

    使用Apache CXF和Spring集成创建Web Service 您的评价:       还行  收藏该经验       1.创建HelloWorld 接口类 查看源码 打印? 1 package ...

  8. 2016-2017-2 20155312 实验二《Java面向对象程序设计》实验报告

    知识总结 伪代码 产品代码 Java编程时,程序员对类实现的测试叫单元测试. 测试用例是为某个特殊目标而编制的一组测试输入.执行条件以及预期结果,以便测试某个程序路径或核实是否满足某个特定需求. 先写 ...

  9. Hadoop3集群搭建之——hive安装

    Hadoop3集群搭建之——虚拟机安装 Hadoop3集群搭建之——安装hadoop,配置环境 Hadoop3集群搭建之——配置ntp服务 Hadoop3集群搭建之——hbase安装及简单操作 现在到 ...

  10. 746. Min Cost Climbing Stairs

    两种方法,核心思想都一样,求出走到每一步上的最小开销,直到最后一步和倒数第二步,比较其最小值返回即可. 方法一,用一个辅助的容器 class Solution { public: int minCos ...