考场上打了一个 \(vector\) 解法,因为我当时不会 \(multiset\)

好吧,我来讲一讲今年的 \(tgD1T3\)

首先,这题 \(55\) 分是不难想的

1、 \(b_i=a_i+1\) 的情况(一条链)

解法:把所有边权记录下来,这种情况等价于将序列分割成 \(m\) 段,使 \(m\) 段区间和的最小值最大

那么二分 \(m\) 段区间和的最小值,然后 \(O(n)\) 贪心扫一遍,时间复杂度 \(O(nlogn)\)

namespace subtask1{
int a[maxn];
void dfs(int x,int fa){
for(int i=head[x],y;i;i=e[i].next){
y=e[i].to;
if(y==fa) continue;
dfs(y,x);
a[x]=e[i].val;
}
}
int check(int k){
int t=0,now=0;
for(int i=1;i<n;i++){
if(now+a[i]>=k){
now=0;
t++;
}
else now+=a[i];
}
return t>=m;
}
void solve(){
dfs(1,0);
int l=1,r=sum,mid;
while(l<r){
mid=l+r+1>>1;
if(check(mid)) l=mid;
else r=mid-1;
}
printf("%d\n",l);
return ;
}
}

2、 \(m=1\) 的情况(树的直径)

解法:取一条最长链,即为树的直径问题,记录一下最大值和次大值,每次把最大

值传到它的父亲,时间复杂度 \(O(n)\)

namespace subtask2{
int dfs(int x,int fa){
int sum1=0,sum2=0;
for(int i=head[x],y;i;i=e[i].next){
y=e[i].to;
if(y==fa) continue;
sum2=max(sum2,dfs(y,x)+e[i].val);
if(sum2>sum1) swap(sum1,sum2);
}
ans=max(ans,sum1+sum2);
return sum1;
}
void solve(){
dfs(1,0);
printf("%d\n",ans);
return ;
}
}

3、\(a_i=1\)的情况(菊花图)

解法:把所有边权记录下来,从大到小排序。设边权为 \(w\),答案即为 \(w_1+w_{2m-1},w_2+w_{2m-2},...,w_m+w_{m+1}\) 的最小值,时间复杂度 \(O(nlogn)\)

namespace subtask3{
int a[maxn];
bool cmp(int a,int b){
return a>b;
}
void solve(){
for(int i=head[1],y;i;i=e[i].next){
y=e[i].to;
a[y-1]=e[i].val;
}
sort(a+1,a+n,cmp);
int ans=inf;
for(int i=1;i<=m;i++)
ans=min(ans,a[i]+a[2*m-i+1]);
printf("%d\n",ans);
}
}

分支不超过 \(3\) 的话其实就是正解的弱化版

看到题意描述第一反应就是先二分那个修建的\(m\)条赛道中长度最小的赛道的长度 \(k\) ,然后 \(O(n)\) 或 \(O(nlogn)\) 判断

那么怎么判断呢?

对于每个结点,把所有传上来的值 \(val\) 放进一个 \(multiset\) ,其实这些值对答案有贡献就两种情况:

  • \(val\geq k\)
  • \(val_a+val_b\geq k\)

那么第一种情况可以不用放进 \(multiset\),直接答案 \(+1\) 就好了。第二种情况就可以对于每一个最小的元素,在 \(multiset\) 中找到第一个 \(\geq k\)的数,将两个数同时删去,最后把剩下最大的值传到那个结点的父亲

我出考场后想为什么这种解法是正确的,有没有可能对于有些情况直接传最大的数会使答案更大?

当然不会。这个数即使很大也只能对答案贡献加 \(1\),在其没传上去的时候可以跟原来结点的值配对,也只能对答案贡献加 \(1\)

\(multiset\) 版:

int dfs(int x,int fa,int k){
s[x].clear();
int val;
for(int i=head[x],y;i;i=e[i].next){
y=e[i].to;
if(y==fa) continue;
val=dfs(y,x,k)+e[i].val;
if(val>=k) ans++;
//直接处理第一种情况
else {
s[x].insert(val);
}
}
int Max=0;
while(!s[x].empty()){
if(s[x].size()==1){
return max(Max,*s[x].begin());
}
//把最大的给传上去
it=s[x].lower_bound(k-*s[x].begin());
//二分到那个值
if(it==s[x].begin()&&s[x].count(*it)==1) it++;
//若找到的就是它自己且当前值的count==1,迭代器++
if(it==s[x].end()){
Max=max(Max,*s[x].begin());
s[x].erase(s[x].find(*s[x].begin()));
}
//若没有找到比k-*s[x].begin()大的,就取个最大值,把*s[x].begin()删掉
else {
ans++;
s[x].erase(s[x].find(*it));
s[x].erase(s[x].find(*s[x].begin()));
}
//处理第二种情况
}
return Max;
//把最大值传上去
}

\(vector\) 版:

while(!s[x].empty()){
if(s[x].size()==1){
return max(Max,*s[x].begin());
}
it=lower_bound(s[x].begin(),s[x].end(),k-*s[x].begin());
if(it==s[x].begin()) it++;
if(it==s[x].end()){
Max=max(Max,*s[x].begin());
s[x].erase(s[x].begin());
}
else {
ans++;
s[x].erase(it);
s[x].erase(s[x].begin());
}
}
return Max;

\(multiset\) 版:时间复杂度 \(O(nlog^2n)\)

\(vector\) 版:时间复杂度 \(O(n^2logn)\)

备注:如果数据是随机的,\(vector\) 的写法会很快,但菊花图可以把它卡掉

然后 \(tgD1T3\) 就被我们解决了

还有就是那个二分上界可以换成树的直径

\(Code\ Below:\)

#include <bits/stdc++.h>
using namespace std;
const int maxn=50000+10;
int n,m,head[maxn],tot,ans,up; struct node{
int to,next,val;
}e[maxn<<1]; multiset<int> s[maxn];
multiset<int>::iterator it; inline int read(){
register int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return (f==1)?x:-x;
} inline void add(int x,int y,int w){
e[++tot].to=y;
e[tot].val=w;
e[tot].next=head[x];
head[x]=tot;
} int dfs(int x,int fa,int k){
s[x].clear();
int val;
for(int i=head[x],y;i;i=e[i].next){
y=e[i].to;
if(y==fa) continue;
val=dfs(y,x,k)+e[i].val;
if(val>=k) ans++;
else {
s[x].insert(val);
}
}
int Max=0;
while(!s[x].empty()){
if(s[x].size()==1){
return max(Max,*s[x].begin());
}
it=s[x].lower_bound(k-*s[x].begin());
if(it==s[x].begin()&&s[x].count(*it)==1) it++;
if(it==s[x].end()){
Max=max(Max,*s[x].begin());
s[x].erase(s[x].find(*s[x].begin()));
}
else {
ans++;
s[x].erase(s[x].find(*it));
s[x].erase(s[x].find(*s[x].begin()));
}
}
return Max;
} int check(int k){
ans=0;
dfs(1,0,k);
if(ans>=m) return 1;
return 0;
} int dfs1(int x,int fa){
int sum1=0,sum2=0;
for(int i=head[x],y;i;i=e[i].next){
y=e[i].to;
if(y==fa) continue;
sum2=max(sum2,dfs1(y,x)+e[i].val);
if(sum1<sum2) swap(sum1,sum2);
}
up=max(up,sum1+sum2);
return sum1;
} int main()
{
n=read(),m=read();
int x,y,w;
for(int i=1;i<n;i++){
x=read(),y=read(),w=read();
add(x,y,w);add(y,x,w);
}
dfs1(1,0);
int l=1,r=up,mid;
while(l<r){
mid=l+r+1>>1;
if(check(mid)) l=mid;
else r=mid-1;
}
printf("%d\n",l);
return 0;
}

[NOIP2018]赛道修建(二分+multiset)的更多相关文章

  1. luogu5021 [NOIp2018]赛道修建 (二分答案+dp(贪心?))

    首先二分一下答案,就变成了找长度>=m的 不相交的路径的个数 考虑到在一个子树中,只有一个点能出这个子树去和别的点搞 所以我这个子树里尽量自我满足是不会有坏处的 而且要在自我满足数最大的条件下, ...

  2. Luogu5021 [NOIP2018]赛道修建

    Luogu5021 [NOIP2018]赛道修建 一棵大小为 \(n\) 的树,边带权.选 \(m\) 条链使得长度和最小的链最大. \(m<n\leq5\times10^4\) 贪心,二分答案 ...

  3. 【LG5021】[NOIP2018]赛道修建

    [LG5021][NOIP2018]赛道修建 题面 洛谷 题解 NOIP之前做过增强版还没做出来\(QAQ\) 一看到题目中的最大值最小,就很容易想到二分答案 重点是考虑如何\(check\) 设\( ...

  4. 竞赛题解 - NOIP2018 赛道修建

    \(\mathcal {NOIP2018}\) 赛道修建 - 竞赛题解 额--考试的时候大概猜到正解,但是时间不够了,不敢写,就写了骗分QwQ 现在把坑填好了~ 题目 (Copy from 洛谷) 题 ...

  5. $Noip2018/Luogu5021$ 赛道修建 二分+树形

    $Luogu$ $Sol$ 一直以为是每个点只能经过一次没想到居然是每条边只能经过一次$....$ 首先其实这题$55$分的部分分真的很好写啊,分别是链,数的直径和菊花图,这里就不详细说了. 使得修建 ...

  6. 【比赛】NOIP2018 赛道修建

    最小值最大,二分长度 然后判断赛道大于等于这个长度最多可以有多少条 可以贪心,对于一个点和它的一些儿子,儿子与儿子之间尽量多配(排序后一大一小),剩下的选个最长的留给自己的父亲就好了 具体实现可以用一 ...

  7. [NOIP2018]赛道修建

    嘟嘟嘟 因为一些知道的人所知道的,不知道的人所不知道的原因,我来改写今年的NOIP了. 现在看这题,心中满是疑问:我当时是多么的zz,这种水题为啥没做出来-- 不管了,说正事. 先考虑部分分. 1.\ ...

  8. 【题解】NOIP2018 赛道修建

    题目戳我 \(\text{Solution:}\) 根据题目信息简化题意,是让你在树上找出\(m\)条路径使得路径长度最小值最大. 看到题第一感先二分一个答案,问题转化为如何选择一些路径使得它们最小值 ...

  9. 【题解】 P5021赛道修建

    [题解]P5021 赛道修建 二分加贪心,轻松拿省一(我没有QAQ) 题干有提示: 输出格式: 输出共一行,包含一个整数,表示长度最小的赛道长度的最大值. 注意到没,最小的最大值,还要多明显? 那么我 ...

随机推荐

  1. 论Java的重要性

    最近,最新的世界编程语言排名最近出炉了,Java位居世界第一.          不仅如此,Java以17.856%超过第二名C语言的8.726%两倍以上,其实,这一现象是十分反常的,因为,在前几年, ...

  2. h5常用标签语义

    <article>定义页面独立的内容区域.例如外部来的文章. <aside>定义页面的侧边栏内容.<aside> 标签定义 <article> 标签外的 ...

  3. Hadoop3集群搭建之——配置ntp服务

    上篇: Hadoop3集群搭建之——虚拟机安装 Hadoop3集群搭建之——安装hadoop,配置环境 下篇: Hadoop3集群搭建之——hive安装 Hadoop3集群搭建之——hbase安装及简 ...

  4. 2019.01.20 bzoj5158 Alice&Bob(拓扑排序+贪心)

    传送门 短代码简单题. 题意简述:对于一个序列XXX,定义其两个伴随序列a,ba,ba,b,aia_iai​表示以第iii个数结尾的最长上升子序列长度,bib_ibi​表示以第iii个数开头的最长下降 ...

  5. C# 中的委托(Delegate)

    委托(Delegate) 是存有对某个方法的引用的一种引用类型变量.引用可在运行时被改变. 委托(Delegate)特别用于实现事件和回调方法.所有的委托(Delegate)都派生自 System.D ...

  6. php代码记录

    公司项目的随想记录也记在这里: 1,证书产生的目的是为了防止不合法的用户能够直接访问接口获取数据.证书由服务器端生成,然后返回给app.然后app拿着这个证书到服务器端获取接口数据,而不是app的合法 ...

  7. MySQL库中表名忽略大小写设置的影响

    前不久,对mysql的lower_case_table_names参数有点小小的疑问: 1.lower_case_table_names是表名忽略大小写还是所有对象(字段.索引等)都忽略大小写? 2. ...

  8. Windows API编程(一)完整的示范程序

    ## #include <windows.h> LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);//回调函数; int APIEN ...

  9. Linux CentOS 5.5 服务器安装图文教程

    下面开始: 系统版本:CentOS 5.5 将镜像刻成光盘,设置BIOS将CDROM设置为第一启动 启动画面: 通过提示,按ENTER进入图形安装模式(E文不好的,赶紧补习去哈~~~) 我们按ENTE ...

  10. 20155326 2017-2018-1 《信息安全系统设计基础》第2周学习及课堂总结myod

    20155326 2017-2018-1 <信息安全系统设计基础>第1次学习及课堂总结myod 虚拟机之前出了一些问题,然后我重新弄了一个新的虚拟机. 先在虚拟机里面安装了git. 安完以 ...