P3235 [HNOI2014]江南乐

Description

两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过1(即尽量均分)。求先手和后手谁必胜。

Input

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。

接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。


预处理每个单一游戏的\(SG\)值

小于\(F\)的置\(0\)必败

大于\(F\)的枚举拆分的堆数,把分开的用\(SG\)定理求一个异或和。

发现可以用乘除分块优化,对奇偶性相同的堆数当\(\lfloor\frac{n}{l}\rfloor\)一样时,答案一样。

预处理的复杂度\(O(n\sqrt n)\)

注意特判\(SG_1=0\)

直接\(SG\)定理回答询问就可以了。


Code:

#include <cstdio>
const int N=1e5+1;
int SG[N],T,F,n,is[N];
int hxor(int x,int k)
{
if(k&1) return x;
return 0;
}
int main()
{
scanf("%d%d",&T,&F);
for(int i=F;i<N;i++)
{
for(int l=1,r;l<=i;l=r+1)
{
r=i/(i/l);
is[hxor(SG[i/l],l-i%l)^hxor(SG[i/l+1],i%l)]=i;
++l;
if(l<=r&&l<=i) is[hxor(SG[i/l],l-i%l)^hxor(SG[i/l+1],i%l)]=i;
}
for(int j=0;is[j]==i;j++) SG[i]=j+1;
}
SG[1]=0;
while(T--)
{
scanf("%d",&n);
int sg=0;
for(int x,i=1;i<=n;i++) scanf("%d",&x),sg^=SG[x];
printf("%d ",sg>0);
}
return 0;
}

2018.12.19

洛谷 P3235 [HNOI2014]江南乐 解题报告的更多相关文章

  1. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  2. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  3. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  4. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  5. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  6. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  7. 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告

    [USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...

  8. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

  9. NOIP2015 D2T3 洛谷2680 BZOJ4326 运输计划 解题报告

    前言:个人认为这是历年NOIP中比较简单的最后一题了,因此将自己的思路与大家分享. 题目大意: 给一棵无根树,给出m条路径.允许将树上的一条边的权值改为0.求m条路径长度最大值的最小值.n,m< ...

随机推荐

  1. .Net 如何访问主流的各大数据库

    做过开发的都知道,.NET基本可以理解是和MSSQL,windows服务器属于一个好的搭档,正如PHP和MYSQL,LIUNX等也可以理解是一个完美搭配:但是在实际的开发中并不完全是这样的,如果你是学 ...

  2. java基础---类加载和对象创建过程

    类中可以存在的成员: class A{ 静态成员变量: 非静态成员变量: 静态函数: 非静态函数: 构造函数 A(..){...} 静态代码块 static{...} 构造代码块 {...} } 类加 ...

  3. CHAPTER 5 ‘The Master of Those Who know’ Aristotle 第5章 “有识之士的大师” 亚里士多德

    CHAPTER 5 ‘The Master of Those Who know’ Aristotle 第5章 “有识之士的大师” 亚里士多德 ‘All men by nature desire to ...

  4. 机器学习算法 --- Naive Bayes classifier

    一.引言 在开始算法介绍之前,让我们先来思考一个问题,假设今天你准备出去登山,但起床后发现今天早晨的天气是多云,那么你今天是否应该选择出去呢? 你有最近这一个月的天气情况数据如下,请做出判断. 这个月 ...

  5. Python函数初识二

    一.变量的作用域LEGB 1.1.变量的作用域 在Python中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的.变量的作用域决定了在哪一部分程序可以访问哪个特定的变量名 ...

  6. Vue 入门之组件化开发

    Vue 入门之组件化开发 组件其实就是一个拥有样式.动画.js 逻辑.HTML 结构的综合块.前端组件化确实让大的前端团队更高效的开发前端项目.而作为前端比较流行的框架之一,Vue 的组件和也做的非常 ...

  7. TeamWork#3,Week5,Performance Test of Crawlers

    爬虫总体性能不错,能完成基本的网络数据爬取,没有功能上的缺陷.下图为饿了么网站商户信息爬取结果及原网站信息. 大部分信息是正确的,但也有一些错误.比如下图,小渝馆家常菜和渝码头川菜位置爬取错了. 再比 ...

  8. No.1_NABCD模型分析

        Reminder 之 NABCD模型分析           定位 多平台的闹钟提醒软件. 在安卓市场发布软件,发布后一周的用户量为1000.           N (Need 需求) 这个 ...

  9. SqlServer中的dbo是什么意思

    出处:http://andylin02.iteye.com/blog/486296 SqlServer中的dbo是什么意思? DBO是每个数据库的默认用户,具有所有者权限,即DbOwner 通过用DB ...

  10. C语言中Union类型的使用方法

    转自:http://blog.csdn.net/feimor/article/details/6858103 使用C语言时,常常使用struct,对于union类型却几乎没有用过,只知道它是联合类型, ...