Description

  

​   给一棵\(n\)个节点的树,和一个长度同样为\(n\)的非负整数序列\(x_i\)。

  

​   请尝试对每个节点染黑或白两种颜色,并确定一个非负整数权值。

  

​   问是否存在一种方案,使得每个点\(i\)满足其子树内与其同色的点的权值之和恰好为\(x_i\)。

  

​   \(1 \le n \le 1000\)

  

  ​ \(0 \le x_i \le 5000\)

  

  

  

Solution

  

​   一道好题。

  

​   我们自底向上逐步确定权值。假设当前正在考虑\(u\)这个点。

  

​   我们发现,\(u\)本身选黑还是白并不重要,其子树中的点只有两种:颜色和\(u\)相同的点,以及颜色和\(u\)不相同的点。

  

​   能确定的是,前一类的点的权值值和必须恰好等于\(x_u\),而在这个条件下,后者的点的权值值和可以有多种情况。

  

​   回头看一下,对于一种合法方案,单看每一种颜色形成的树的话,每个点\(u\)都要满足“后继”(单看一个颜色形成的树意义下的后继)的\(x\)之和小于等于\(x_u\),这样一来\(u\)的权值可以设为一个恰好的值,使得和调整为\(x_u\)。

  

​   显然我们可以对每个点\(u\)维护一个值\(f_u\),表示在满足与\(u\)颜色相同的点的权值值和恰好为\(x_u\)时,与\(u\)颜色不同的点的权值之和最小是多少。这是一个贪心的思想,由于一种颜色的权值和只能是\(x_u\),因此我们尽量保证另一种颜色的权值之和最小,以最大化这种颜色在之后考虑父亲节点时满足“小于等于”的可能性。

  

​   设\(g_i\)表示当前与\(u\)同色权值值和为\(i\)时,另一个颜色的最小值是多少。

  

​   初始有\(g_0=0, g_{i}=\infty (i>0)\)

  

​   对于每个后继\(v\),转移

\[g_i+f_v\rightarrow g_{i+x_v}\\g_i+x_v\rightarrow g_{i+f_v}
\]

​   注意是非继承转移,每层转移前每个位置都是\(\infty\)。

  

​   最后\(f_u=\min g_i\;\;(0 \le i \le x_u)\)

  

​   如果$f_1=\infty $就无解,否则有解。

    

​   此题关键是想到贪心的那一步。如果不贪心的话,相当于每个点有多个状态(另一个颜色有多种和)等待转移,根本做不了。

  

​  

  

  

  

Code

  

#include <cstdio>
using namespace std;
const int N=1005,X=5005,INF=1e9;
int n,a[N];
int f[N],g1[X],g2[X];
int h[N],tot;
struct Edge{int v,next;}e[N*2];
inline void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
inline int min(int x,int y){return x<y?x:y;}
void readData(){
scanf("%d",&n);
int fa;
for(int i=2;i<=n;i++){
scanf("%d",&fa);
addEdge(fa,i);
}
for(int i=1;i<=n;i++) scanf("%d",a+i);
}
void dfs(int u,int fa){
bool have=false;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa){
have=true;
dfs(v,u);
}
if(!have){
f[u]=0;
return;
}
for(int i=0;i<=a[u];i++) g1[i]=INF;
g1[0]=0;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa){
for(int j=0;j<=a[u];j++) g2[j]=INF;
for(int j=0;j<=a[u]&&(j+a[v]<=a[u]||j+f[v]<=a[u]);j++)
if(g1[j]!=INF){
if(j+a[v]<=a[u])
g2[j+a[v]]=min(g2[j+a[v]],g1[j]+f[v]);
if(j+f[v]<=a[u])
g2[j+f[v]]=min(g2[j+f[v]],g1[j]+a[v]);
}
for(int j=0;j<=a[u];j++) g1[j]=g2[j];
}
f[u]=INF;
for(int i=0;i<=a[u];i++) f[u]=min(f[u],g1[i]);
}
int main(){
readData();
dfs(1,0);
puts(f[1]==INF?"IMPOSSIBLE":"POSSIBLE");
return 0;
}

【ARC083E】Bichrome Tree的更多相关文章

  1. 【ARC083E】Bichrome Tree 树形dp

    Description 有一颗N个节点的树,其中1号节点是整棵树的根节点,而对于第ii个点(2≤i≤N)(2≤i≤N),其父节点为PiPi 对于这棵树上每一个节点Snuke将会钦定一种颜色(黑或白), ...

  2. 【BZOJ】2631: tree LCT

    [题意]给定n个点的树,每个点初始权值为1,m次操作:1.x到y的点加值,2.断一条边并连一条边,保证仍是树,3.x到y的点乘值,4.x到y的点权值和取模.n,m<=10^5. [算法]Link ...

  3. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  4. 【题解】Digit Tree

    [题解]Digit Tree CodeForces - 716E 呵呵以为是数据结构题然后是淀粉质还行... 题目就是给你一颗有边权的树,问你有多少路径,把路径上的数字顺次写出来,是\(m\)的倍数. ...

  5. 【题解】[P4178 Tree]

    [题解]P4178 Tree 一道点分治模板好题 不知道是不是我见到的题目太少了,为什么这种题目都是暴力开值域的桶QAQ?? 问点对,考虑点分治吧.直接用值域树状数组开下来,统计的时候直接往树状数组里 ...

  6. 【总结】Link-Cut Tree

    这是一篇关于LCT的总结 加删边的好朋友--Link Cut Tree Link-Cut Tree,LCT的全称 可以说是从树剖引出的问题 树剖可以解决静态的修改或查询树的链上信息:那如果图会不断改变 ...

  7. 【BZOJ】1468: Tree(POJ1741) 点分治

    [题意]给定带边权树,求两点距离<=k的点对数.n<=40000. [算法]点分治 [题解]对于一个区域,选择其重心x作为根,则划分出来的每棵子树都是子区域,可以证明至多划分log n次( ...

  8. 【题解】【BT】【Leetcode】Binary Tree Preorder/Inorder/Postorder (Iterative Solution)

    [Inorder Traversal] Given a binary tree, return the inorder traversal of its nodes' values. For exam ...

  9. 【Leetcode】【Easy】Binary Tree Level Order Traversal II

    Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left ...

随机推荐

  1. CHAPTER 24 History of Our Planet 第24章 我们行星的历史

    CHAPTER 24 History of Our Planet 第24章 我们行星的历史 Uncovering the bones of ancient beasts is only part of ...

  2. 【Docker】第一篇 Docker的初始化安装部署

    一.Docker基础 Dacker倡导的理念:一个容器一个进程 Docker的版本了解: Docker从1.13版本之后采用时间线的方式作为版本号,分为社区版CE和企业版EE. 社区版是免费提供给个人 ...

  3. mpstat命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/ggjucheng/archive/2013/01/13/2858775.html 简介 mpstat是Multipro ...

  4. python之爬虫_并发(串行、多线程、多进程、异步IO)

    并发 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢 import requests def fetch_async(url): res ...

  5. Bing词典vs有道词典比对测试报告——体验篇之软件适应性

    联网情况: 在联网情况下,针对每一次查询,有道词典的反应速度明显比必应词典快得多.据我推测有以下两个原因: 有道词典有本地词库而必应词典更多依赖联网. 有道词典的服务器在国内而必应的在国外. 断网情况 ...

  6. Daily Scrum3 11.5

    昨天的任务已经完成,但是大家分析后发现进度稍有些慢.今天各自都在调整进度,不再拖延别人的工作. 今日任务: 杨伊:做问卷调查,准备用户体验篇内容. 徐钧鸿:把Xueba中Utility 向闸瓦移植 张 ...

  7. keil C 51 strlen库函数使用

    在keil c51 程序中,若定义数组 volatile unsigned char  data[3]={'G','G','G'};使用strlen(&data);得到的长度是不对的,若定义v ...

  8. jsp 页面和 jsp标记

    一个jsp页面可由5种元素组成 html标记 变量和方法的声明 java程序片 java表达式 <%!变量和方法的声明%> 被声明的方法和变量在整个jsp页面都可以访问,为全局变量 当多个 ...

  9. Teamcity部署.net服务“无法连接到远程服务器”解决方式

    在公司Teamcity上执行自动部署.net服务的时候,发现Teamcity在启动default.aspx的时候报错了,提示:使用“0”个参数调用“GetResponse”时发生异常:“无法连接到远程 ...

  10. Redis&PHP的使用安装-windows版

    Redis是一个Key-value的数据结构存储系统,可以以数据库的形式,缓存系统,消息处理器使用,它支持的存储value类型很多,例如,string.list(链表).set(集合).zset(so ...