齐次坐标(Homogeneous Coordinates)
原文:http://blog.163.com/m_note/blog/static/208197045201272341230195/
齐次坐标(Homogeneous Coordinates)
问题: 两条平行线会相交

铁轨在无限远处相交于一点
在欧几里得几何空间里,两条平行线永远都不会相交。但是在投影空间中,如右图中的两条铁轨在地平线处却是会相交的,因为在无限远处它们看起来相交于一点。
在欧几里得(或称笛卡尔)空间里描述2D/3D 几何物体是很理想的,但在投影空间里面却并不见得。 我们用 (x, y) 表示笛卡尔空间中的一个 2D 点,而处于无限远处的点 (∞,∞) 在笛卡尔空间里是没有意义的。投影空间里的两条平行线会在无限远处相交于一点,但笛卡尔空间里面无法搞定这个问题(因为无限远处的点在笛卡尔空间里是没有意义的),因此数学家想出齐次坐标这个点子来了。
解决办法: 其次坐标由 August Ferdinand M bius 提出的齐次坐标(Homogeneous coordinates)让我们能够在投影空间里进行图像和几何处理,齐次坐标用 N + 1个分量来描述 N 维坐标。比如,2D 齐次坐标是在笛卡尔坐标(X, Y)的基础上增加一个新分量 w,变成(x, y, w),其中笛卡尔坐标系中的大X,Y 与齐次坐标中的小x,y有如下对应关系:
X = x/w
Y = y/w
笛卡尔坐标中的点 (1, 2) 在齐次坐标中就是 (1, 2, 1) 。如果这点移动到无限远(∞,∞)处,在齐次坐标中就是 (1, 2, 0) ,这样我们就避免了用没意义的"∞" 来描述无限远处的点。
为什么叫齐次坐标?前面提到,我们分别用齐次坐标中的 x 和 y 除以 w 就得到笛卡尔坐标中的 x 和 x,如图所示:
仔细观察下面的转换例子,可以发现些有趣的东西:
上图中,点 (1, 2, 3), (2, 4, 6) 和 (4, 8, 12) 对应笛卡尔坐标中的同一点 (1/3, 2/3)。 任意数量积的(1a, 2a, 3a) 始终对应于笛卡尔坐标中的同一点 (1/3, 2/3)。因此这些点是“齐次”的,因为他们始终对应于笛卡尔坐标中的同一点。换句话说,齐次坐标描述缩放不变性(scale invariant)。
证明: 两平行线可以相交笛卡尔坐标系中,对于如下两个直线方程:
如果 C ≠ D,以上方程组无解;如果 C = D,那这两条线就是同一条线了。
下面我们用 x/w, y/w 代替 x, y 放到投影空间里来求解:

现在我们就可以在 C ≠ D 的情况得到一组解 (x, y, 0),代入得 (C - D)w = 0,因为 C ≠ D,所以 w = 0。因而,两条平行线相交于投影空间中无限远处的一点 (x, y, 0)。
齐次坐标在计算机图形学中是有用的,将 3D 场景投影到 2D 平面的过程中就用到它了。
齐次坐标(Homogeneous Coordinates)的更多相关文章
- opengl矩阵向量
如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...
- 游戏引擎架构 (Jason Gregory 著)
第一部分 基础 第1章 导论 (已看) 第2章 专业工具 (已看) 第3章 游戏软件工程基础 (已看) 第4章 游戏所需的三维数学 (已看) 第二部分 低阶引擎系统 第5章 游戏支持系统 (已看) 第 ...
- OpenGL投影矩阵(Projection Matrix)构造方法
(翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这 ...
- 齐次坐标概念&&透视投影变换推导
http://daehgib.blog.163.com/blog/static/1861071422011579551134/ 透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(fr ...
- OpenCASCADE Rational Bezier Curves
OpenCASCADE Rational Bezier Curves eryar@163.com Abstract. Although polynomials offer many advantage ...
- [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...
- webgl自学笔记——矩阵变换
这章主要探讨矩阵,这些矩阵代表了应用在我们场景上的变换,允许我们移动物体.然而在webGL api中并没有一个专门的camera对象,只有矩阵.好消息是使用矩阵来取代相机对象能让webgl在很多复杂动 ...
- OpenGL.Tutorial文章转载
ZC:本来以为没有中文版的,原来有中文版,网址为: ZC: OpenGL3.0教程 _ 泰然网.html(http://www.tairan.com/archives/6126/) ZC: OpenG ...
- OpenGL.Tutorial16_ShadowMapping
1. 2. In Tutorial 15 we learnt how to create lightmaps, which encompasses(包含) static lighting. While ...
随机推荐
- Linux系统内存管理
<linux 内存管理模型> 下面这个图将Linux内存管理基本上描述完了,但是显得有点复杂,接下来一部分一部分的解析. 内存管理系统可以分为两部分,分别是内核空间内存管理和用户空间内存管 ...
- android 单位 什么是屏幕密度?
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha sp dp px in in 表示英寸, 是屏幕的物理尺寸.1英寸是2.54厘米. dp ...
- JavaSE基础之JDBC
JavaSE基础之JDBC 1.JDBC 的步骤: ①加载数据库驱动: a.MySQL:com.mysql.jdbc.Driver: b.SQLServer:com.microsoft.jdbc.sq ...
- SB!SB!SB! ----WriteUp
原题 下载图片 http://ctf5.shiyanbar.com/stega/ste.png 用Stegsolve查看 发现有个二维码 扫码可以知道flag
- [POI2000]Repetitions
题目大意: 求多个字符串的LCS. 思路: 同SPOJ-LCS2,不过因为SPOJ上数据比较水,当时用错误的写法过掉了,这次用正确的写法重新过了一遍. 拓扑排序按照每个状态的len值,用计数排序实现. ...
- 【BZOJ】1415: [Noi2005]聪聪和可可【期望】【最短路】【记忆化搜索】
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2335 Solved: 1373[Submit][Stat ...
- [转载] 使用Kettle进行数据迁移(ETL)
由于开发新的系统,需要将之前一个老的C/S应用的数据按照新的数据设计导入到新库中.此过程可能涉及到表结构不一致.大数据量(千万级,甚至上亿)等情况,包括异构数据的抽取.清洗等等工作.部分复杂的工作需要 ...
- HDU 4726 Kia's Calculation(贪心)
Kia's Calculation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- FT232H USB转串口,I2C,JTAG高速芯片
随着FT232H USB2.0高速芯片的发布,英商飞特蒂亚公司(FTDI)进一步巩固了其在USB接口集成电路产品的地位.此款多功能的单通道USB转UART/FIFO接口设备可通过EEPROM配置为各种 ...
- java基础学习总结——方法的重载(overload)
一.方法的重载 方法名一样,但参数不一样,这就是重载(overload). 所谓的参数不一样,主要有两点:第一是参数的个数不一样,第二是参数的类型不一样.只要这两方面有其中的一方面不一样就可以构成方法 ...