齐次坐标(Homogeneous Coordinates)
原文:http://blog.163.com/m_note/blog/static/208197045201272341230195/
齐次坐标(Homogeneous Coordinates)
问题: 两条平行线会相交

铁轨在无限远处相交于一点
在欧几里得几何空间里,两条平行线永远都不会相交。但是在投影空间中,如右图中的两条铁轨在地平线处却是会相交的,因为在无限远处它们看起来相交于一点。
在欧几里得(或称笛卡尔)空间里描述2D/3D 几何物体是很理想的,但在投影空间里面却并不见得。 我们用 (x, y) 表示笛卡尔空间中的一个 2D 点,而处于无限远处的点 (∞,∞) 在笛卡尔空间里是没有意义的。投影空间里的两条平行线会在无限远处相交于一点,但笛卡尔空间里面无法搞定这个问题(因为无限远处的点在笛卡尔空间里是没有意义的),因此数学家想出齐次坐标这个点子来了。
解决办法: 其次坐标由 August Ferdinand M bius 提出的齐次坐标(Homogeneous coordinates)让我们能够在投影空间里进行图像和几何处理,齐次坐标用 N + 1个分量来描述 N 维坐标。比如,2D 齐次坐标是在笛卡尔坐标(X, Y)的基础上增加一个新分量 w,变成(x, y, w),其中笛卡尔坐标系中的大X,Y 与齐次坐标中的小x,y有如下对应关系:
X = x/w
Y = y/w
笛卡尔坐标中的点 (1, 2) 在齐次坐标中就是 (1, 2, 1) 。如果这点移动到无限远(∞,∞)处,在齐次坐标中就是 (1, 2, 0) ,这样我们就避免了用没意义的"∞" 来描述无限远处的点。
为什么叫齐次坐标?前面提到,我们分别用齐次坐标中的 x 和 y 除以 w 就得到笛卡尔坐标中的 x 和 x,如图所示:

仔细观察下面的转换例子,可以发现些有趣的东西:

上图中,点 (1, 2, 3), (2, 4, 6) 和 (4, 8, 12) 对应笛卡尔坐标中的同一点 (1/3, 2/3)。 任意数量积的(1a, 2a, 3a) 始终对应于笛卡尔坐标中的同一点 (1/3, 2/3)。因此这些点是“齐次”的,因为他们始终对应于笛卡尔坐标中的同一点。换句话说,齐次坐标描述缩放不变性(scale invariant)。
证明: 两平行线可以相交笛卡尔坐标系中,对于如下两个直线方程:

如果 C ≠ D,以上方程组无解;如果 C = D,那这两条线就是同一条线了。
下面我们用 x/w, y/w 代替 x, y 放到投影空间里来求解:

现在我们就可以在 C ≠ D 的情况得到一组解 (x, y, 0),代入得 (C - D)w = 0,因为 C ≠ D,所以 w = 0。因而,两条平行线相交于投影空间中无限远处的一点 (x, y, 0)。
齐次坐标在计算机图形学中是有用的,将 3D 场景投影到 2D 平面的过程中就用到它了。
齐次坐标(Homogeneous Coordinates)的更多相关文章
- opengl矩阵向量
如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...
- 游戏引擎架构 (Jason Gregory 著)
第一部分 基础 第1章 导论 (已看) 第2章 专业工具 (已看) 第3章 游戏软件工程基础 (已看) 第4章 游戏所需的三维数学 (已看) 第二部分 低阶引擎系统 第5章 游戏支持系统 (已看) 第 ...
- OpenGL投影矩阵(Projection Matrix)构造方法
(翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这 ...
- 齐次坐标概念&&透视投影变换推导
http://daehgib.blog.163.com/blog/static/1861071422011579551134/ 透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(fr ...
- OpenCASCADE Rational Bezier Curves
OpenCASCADE Rational Bezier Curves eryar@163.com Abstract. Although polynomials offer many advantage ...
- [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...
- webgl自学笔记——矩阵变换
这章主要探讨矩阵,这些矩阵代表了应用在我们场景上的变换,允许我们移动物体.然而在webGL api中并没有一个专门的camera对象,只有矩阵.好消息是使用矩阵来取代相机对象能让webgl在很多复杂动 ...
- OpenGL.Tutorial文章转载
ZC:本来以为没有中文版的,原来有中文版,网址为: ZC: OpenGL3.0教程 _ 泰然网.html(http://www.tairan.com/archives/6126/) ZC: OpenG ...
- OpenGL.Tutorial16_ShadowMapping
1. 2. In Tutorial 15 we learnt how to create lightmaps, which encompasses(包含) static lighting. While ...
随机推荐
- 机器学习之路:python支持向量机回归SVR 预测波士顿地区房价
python3 学习使用api 支持向量机的两种核函数模型进行预测 git: https://github.com/linyi0604/MachineLearning from sklearn.dat ...
- jQuery学习总结1
一.下载集CDN引入 1.1.官方下载 地址:http://jQuery.com/download/ jq自2.0版本开始,不再支持IE9一下浏览器:自3.0版本开始,针对移动端做了优化处理: 引入 ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- SPOJ GSS
GSS1 题目大意:给出一个数列,多次询问区间最长连续子段和 题解:线段树维护区间最长连续子段和gss,区间从最左元素开始的最长连续子段和lgss 区间以最右元素为结尾的最长连续子段和rgss以及区间 ...
- Python文件类型
Python的文件类型分为三种:源代码.字节代码.优化代码. 1. 源代码 Python源代码文件,即py脚本文件,由 python.exe 解释,可在控制台下运行.pyw脚本文件是图形用户接口 ...
- Educational Codeforces Round 13 E. Another Sith Tournament 状压dp
E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...
- hdoj 4450 Draw Something 水题
Draw Something Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- Codeforces Round #295 (Div. 2)B - Two Buttons BFS
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- CodeForces 128D Numbers 构造
D. Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...
- 技能树升级——Chrome Headless模式 - 全栈客栈 - SegmentFault
技能树升级--Chrome Headless模式 - 全栈客栈 - SegmentFault TNPM