齐次坐标(Homogeneous Coordinates)
原文:http://blog.163.com/m_note/blog/static/208197045201272341230195/
齐次坐标(Homogeneous Coordinates)
问题: 两条平行线会相交

铁轨在无限远处相交于一点
在欧几里得几何空间里,两条平行线永远都不会相交。但是在投影空间中,如右图中的两条铁轨在地平线处却是会相交的,因为在无限远处它们看起来相交于一点。
在欧几里得(或称笛卡尔)空间里描述2D/3D 几何物体是很理想的,但在投影空间里面却并不见得。 我们用 (x, y) 表示笛卡尔空间中的一个 2D 点,而处于无限远处的点 (∞,∞) 在笛卡尔空间里是没有意义的。投影空间里的两条平行线会在无限远处相交于一点,但笛卡尔空间里面无法搞定这个问题(因为无限远处的点在笛卡尔空间里是没有意义的),因此数学家想出齐次坐标这个点子来了。
解决办法: 其次坐标由 August Ferdinand M bius 提出的齐次坐标(Homogeneous coordinates)让我们能够在投影空间里进行图像和几何处理,齐次坐标用 N + 1个分量来描述 N 维坐标。比如,2D 齐次坐标是在笛卡尔坐标(X, Y)的基础上增加一个新分量 w,变成(x, y, w),其中笛卡尔坐标系中的大X,Y 与齐次坐标中的小x,y有如下对应关系:
X = x/w
Y = y/w
笛卡尔坐标中的点 (1, 2) 在齐次坐标中就是 (1, 2, 1) 。如果这点移动到无限远(∞,∞)处,在齐次坐标中就是 (1, 2, 0) ,这样我们就避免了用没意义的"∞" 来描述无限远处的点。
为什么叫齐次坐标?前面提到,我们分别用齐次坐标中的 x 和 y 除以 w 就得到笛卡尔坐标中的 x 和 x,如图所示:

仔细观察下面的转换例子,可以发现些有趣的东西:

上图中,点 (1, 2, 3), (2, 4, 6) 和 (4, 8, 12) 对应笛卡尔坐标中的同一点 (1/3, 2/3)。 任意数量积的(1a, 2a, 3a) 始终对应于笛卡尔坐标中的同一点 (1/3, 2/3)。因此这些点是“齐次”的,因为他们始终对应于笛卡尔坐标中的同一点。换句话说,齐次坐标描述缩放不变性(scale invariant)。
证明: 两平行线可以相交笛卡尔坐标系中,对于如下两个直线方程:

如果 C ≠ D,以上方程组无解;如果 C = D,那这两条线就是同一条线了。
下面我们用 x/w, y/w 代替 x, y 放到投影空间里来求解:

现在我们就可以在 C ≠ D 的情况得到一组解 (x, y, 0),代入得 (C - D)w = 0,因为 C ≠ D,所以 w = 0。因而,两条平行线相交于投影空间中无限远处的一点 (x, y, 0)。
齐次坐标在计算机图形学中是有用的,将 3D 场景投影到 2D 平面的过程中就用到它了。
齐次坐标(Homogeneous Coordinates)的更多相关文章
- opengl矩阵向量
如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...
- 游戏引擎架构 (Jason Gregory 著)
第一部分 基础 第1章 导论 (已看) 第2章 专业工具 (已看) 第3章 游戏软件工程基础 (已看) 第4章 游戏所需的三维数学 (已看) 第二部分 低阶引擎系统 第5章 游戏支持系统 (已看) 第 ...
- OpenGL投影矩阵(Projection Matrix)构造方法
(翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这 ...
- 齐次坐标概念&&透视投影变换推导
http://daehgib.blog.163.com/blog/static/1861071422011579551134/ 透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(fr ...
- OpenCASCADE Rational Bezier Curves
OpenCASCADE Rational Bezier Curves eryar@163.com Abstract. Although polynomials offer many advantage ...
- [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...
- webgl自学笔记——矩阵变换
这章主要探讨矩阵,这些矩阵代表了应用在我们场景上的变换,允许我们移动物体.然而在webGL api中并没有一个专门的camera对象,只有矩阵.好消息是使用矩阵来取代相机对象能让webgl在很多复杂动 ...
- OpenGL.Tutorial文章转载
ZC:本来以为没有中文版的,原来有中文版,网址为: ZC: OpenGL3.0教程 _ 泰然网.html(http://www.tairan.com/archives/6126/) ZC: OpenG ...
- OpenGL.Tutorial16_ShadowMapping
1. 2. In Tutorial 15 we learnt how to create lightmaps, which encompasses(包含) static lighting. While ...
随机推荐
- 模型构建<2>:不平衡样本集的处理
分类预测建模都有一个基本的假设,即样本集中不同类别的样本个数基本相同,但是在实际任务中,经常会出现各类样本个数差别较大的情况,这样的样本集就是不平衡样本集,它对学习建模的性能会带来很大的影响,因此必须 ...
- Codeforces.809E.Surprise me!(莫比乌斯反演 虚树)
题目链接 \(Description\) 给定一棵树,求\[\frac{1}{n(n-1)/2}\times\sum_{i\in[1,n],j\in[1,n],i\neq j}\varphi(a_i\ ...
- WEB架构师成长之路 三
Web架构师究竟都要学些什么?具备哪些能力呢?先网上查查架构师的大概的定义,参见架构师修炼之道这篇文章,写的还不错,再查查公司招聘Web架构师的要求. 总结起来大概有下面几点技能要求: 一. 架构师有 ...
- SQL SERVER 扩展属性的操作方法
将数据库迁移到 Azure SQL 数据库时出现错误,不支持扩展属性“MS_Description”,因此就如何操作扩展属性进行在此记录. 查询扩展属性 SELECT *,OBJECT_NAME(ma ...
- Android优化之软引用和弱引用
Java从JDK1.2版本开始,就把对象的引用分为四种级别,从而使程序能更加灵活的控制对象的生命周期.这四种级别由高到低依次为:强引用.软引用.弱引用和虚引用.这里重点介绍一下软引用和弱引用. 如果一 ...
- CF 277.5 C.Given Length and Sum of Digits.. 构造
#include <cstdio> #include <cmath> #include <cstring> #include <ctime> #incl ...
- MVC高级编程-目录
MVC高级编程 ================================================== 控制器 视图 模型 表单和HTML辅助方法 数据注解和验证 成员资格.授权和安全性 ...
- Redis中文API地址
地址:http://redis.readthedocs.org/en/2.4/string.html
- 活动(Activity)
一.用Log打印日志 Log.d("HelloWorldActivity", "onCreate execute"); 二.Toast用法 Toast.make ...
- android aapt 用法 -- ApkReader
aapt 是android assert packaging tool的缩写,具体如下: 1. 列出apk包的内容 aapt l[ist] [-v] [-a] file.{zip,jar,apk} - ...