原文:http://blog.163.com/m_note/blog/static/208197045201272341230195/

齐次坐标(Homogeneous Coordinates) 
问题: 两条平行线会相交


铁轨在无限远处相交于一点
在欧几里得几何空间里,两条平行线永远都不会相交。但是在投影空间中,如右图中的两条铁轨在地平线处却是会相交的,因为在无限远处它们看起来相交于一点。
在欧几里得(或称笛卡尔)空间里描述2D/3D 几何物体是很理想的,但在投影空间里面却并不见得。 我们用 (x, y) 表示笛卡尔空间中的一个 2D 点,而处于无限远处的点 (∞,∞) 在笛卡尔空间里是没有意义的。投影空间里的两条平行线会在无限远处相交于一点,但笛卡尔空间里面无法搞定这个问题(因为无限远处的点在笛卡尔空间里是没有意义的),因此数学家想出齐次坐标这个点子来了
解决办法: 其次坐标由 August Ferdinand M bius 提出的齐次坐标(Homogeneous coordinates)让我们能够在投影空间里进行图像和几何处理,齐次坐标用 N + 1个分量来描述 N 维坐标。比如,2D 齐次坐标是在笛卡尔坐标(X, Y)的基础上增加一个新分量 w,变成(x, y, w),其中笛卡尔坐标系中的大X,Y 与齐次坐标中的小x,y有如下对应关系:
X = x/w
Y = y/w 
笛卡尔坐标中的点 (1, 2) 在齐次坐标中就是 (1, 2, 1) 。如果这点移动到无限远(∞,∞)处,在齐次坐标中就是 (1, 2, 0) ,这样我们就避免了用没意义的"∞" 来描述无限远处的点。
为什么叫齐次坐标?前面提到,我们分别用齐次坐标中的 x 和 y 除以 w 就得到笛卡尔坐标中的 x 和 x,如图所示:
 
仔细观察下面的转换例子,可以发现些有趣的东西:

 
上图中,点 (1, 2, 3), (2, 4, 6) 和 (4, 8, 12) 对应笛卡尔坐标中的同一点 (1/3, 2/3)。 任意数量积的(1a, 2a, 3a) 始终对应于笛卡尔坐标中的同一点 (1/3, 2/3)。因此这些点是“齐次”的,因为他们始终对应于笛卡尔坐标中的同一点。换句话说,齐次坐标描述缩放不变性(scale invariant)
证明: 两平行线可以相交笛卡尔坐标系中,对于如下两个直线方程:
 
如果 C ≠ D,以上方程组无解;如果 C = D,那这两条线就是同一条线了。
下面我们用 x/w, y/w 代替 x, y 放到投影空间里来求解:

现在我们就可以在 C ≠ D 的情况得到一组解 (x, y, 0),代入得 (C - D)w = 0,因为 C ≠ D,所以 w = 0。因而,两条平行线相交于投影空间中无限远处的一点 (x, y, 0)。
齐次坐标在计算机图形学中是有用的,将 3D 场景投影到 2D 平面的过程中就用到它了

齐次坐标(Homogeneous Coordinates)的更多相关文章

  1. opengl矩阵向量

    如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...

  2. 游戏引擎架构 (Jason Gregory 著)

    第一部分 基础 第1章 导论 (已看) 第2章 专业工具 (已看) 第3章 游戏软件工程基础 (已看) 第4章 游戏所需的三维数学 (已看) 第二部分 低阶引擎系统 第5章 游戏支持系统 (已看) 第 ...

  3. OpenGL投影矩阵(Projection Matrix)构造方法

    (翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这 ...

  4. 齐次坐标概念&&透视投影变换推导

    http://daehgib.blog.163.com/blog/static/1861071422011579551134/ 透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(fr ...

  5. OpenCASCADE Rational Bezier Curves

    OpenCASCADE Rational Bezier Curves eryar@163.com Abstract. Although polynomials offer many advantage ...

  6. [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV

    仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...

  7. webgl自学笔记——矩阵变换

    这章主要探讨矩阵,这些矩阵代表了应用在我们场景上的变换,允许我们移动物体.然而在webGL api中并没有一个专门的camera对象,只有矩阵.好消息是使用矩阵来取代相机对象能让webgl在很多复杂动 ...

  8. OpenGL.Tutorial文章转载

    ZC:本来以为没有中文版的,原来有中文版,网址为: ZC: OpenGL3.0教程 _ 泰然网.html(http://www.tairan.com/archives/6126/) ZC: OpenG ...

  9. OpenGL.Tutorial16_ShadowMapping

    1. 2. In Tutorial 15 we learnt how to create lightmaps, which encompasses(包含) static lighting. While ...

随机推荐

  1. springBoot 自动配置原理

    在之前文章中说过,springBoot会根据jar包去添加许多的自动配置,本文就来说说为什么会自动配置,自动配置的原理时什么? springBoot在运行SpringApplication对象实例化时 ...

  2. LOJ P3960 列队 树状数组 vector

    https://www.luogu.org/problemnew/show/P3960 树状数组预处理之后直接搞就可以了,也不是很好解释,反正就是一个模拟过程的暴力用树状数组维护,还挺巧妙的. 我为什 ...

  3. 90. 子集 II

    90. 子集 II 题意 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: [1,2,2]输出:[ [2], [1], ...

  4. ACM需要掌握算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

  5. Treap树理解

    title: Treap树理解 comments: true date: 2016-10-06 07:57:37 categories: 算法 tags: Treap树 树 Treap树理解 简介 随 ...

  6. linux命令-每天一点进步

    2018-05-28 1.yum install -y,这里的-y表示,在安装软件的过程中,无需用户输入yes or no,默认yes 2../sbin/nginx -s reload,重启nginx ...

  7. scriptlet

    <!-- <%! %>:可以修饰全局变量.常量.类.方法 对应java类中的成员变量.常量.内部类.成员方法 --> <%! int num=10;//全局变量 publ ...

  8. SQL Structured Query Language(结构化查询语言) 数据库

    SQL是Structured Query Language(结构化查询语言)的缩写. SQL是专为数据库而建立的操作命令集,是一种功能齐全的数据库语言. 在使用它时,只需要发出“做什么”的命令,“怎么 ...

  9. Iptables 指南 1.1.19

    Iptables 指南 1.1.19 Oskar Andreasson oan@frozentux.net Copyright © 2001-2003 by Oskar Andreasson 本文在符 ...

  10. 百度地图api改变覆盖物背景实例及css颜色值简介

    在此鸣谢buptwusuopu的技术支持 在调用百度地图api的时候,为了改变覆盖物的颜色,如图中椭圆型的填充色.可以到百度api的库中查找方法http://developer.baidu.com/m ...