「JSOI2018」战争

解题思路

我们需要每次求给一个凸包加上一个向量后是否与另外一个凸包相交,也就是说是否存在

\[b\in B,(b+w)\in A
\]

这里 \(A, B\) 表示凸包内部的点集,可以转化一步变成

\[a\in A,b \in B,b+w=a \\ w =a -b
\]

那相当于对 \(A,(-B)\) 作闵可夫斯基和,判断 \(w\) 是否在新的凸包内部,把新的凸包划分成三角区域,让 \(w\) 和原点做一条向量,二分一下在哪个区域然后判断一下在区域内部还是外部就可以了,复杂度 \(\mathcal O(n \log n)\) 。

code

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 1000005;
struct P{
ll x, y;
friend P operator + (P a, P b){ return (P){a.x + b.x, a.y + b.y}; }
friend P operator - (P a, P b){ return (P){a.x - b.x, a.y - b.y}; }
friend ll operator * (P a, P b){ return a.x * b.y - b.x * a.y; }
inline ll dis(){ return x * x + y * y; }
}A[N], B[N], C[N], s1[N], s2[N], st[N], O;
int n, m, q;
inline bool cmp1 (P A, P B){
return A.y != B.y ? A.y < B.y : A.x < B.x;
}
inline bool cmp2 (P A, P B){
//叉积一样按照离原点距离排,防止较远的点被近的点日掉
ll res = (A - O) * (B - O);
return res ? res > 0 : (A - O).dis() < (B - O).dis();
}
inline int convex(P *A, int len){
//求点集 A 的凸包并返回凸包大小
sort(A + 1, A + len + 1, cmp1); O = A[1];
sort(A + 2, A + len + 1, cmp2);
int top = 1; st[top] = A[1];
for(int i = 2; i <= len; i++){
while(top > 1 && (st[top] - st[top-1]) * (A[i] - st[top-1]) <= 0) top--;
st[++top] = A[i];
}
for(int i = 1; i <= top; i++) A[i] = st[i];
return top;
}
inline int inconvex(P x, P *A, int len){
//判断点 x 是否在大小为len的凸包 A 里,二分找到向量所在的三角区域
O = A[1];
if((x - O) * (A[2] - O) > 0 || (x - O) * (A[len] - O) < 0) return 0;
int pos = lower_bound(A + 2, A + len + 1, x, cmp2) - A - 1;
return (x - A[pos]) * (A[pos%len+1] - A[pos]) <= 0; }
inline int Minkowski(P *A, P *B, P *C, int n, int m){
//将大小为 n, m 的凸包 A, B 的闵可夫斯基和存在 C 中,并返回凸包大小
int tot1 = 0, tot2 = 0;
for(int i = 1; i < n; i++) s1[++tot1] = A[i+1] - A[i];
s1[++tot1] = A[1] - A[n];
for(int i = 1; i < m; i++) s2[++tot2] = B[i+1] - B[i];
s2[++tot2] = B[1] - B[m];
int p1 = 1, p2 = 1, tot = 1; C[tot] = A[1] + B[1];
for(; p1 <= n && p2 <= m; tot++)
C[tot+1] = C[tot] + (s1[p1] * s2[p2] >= 0 ? s1[p1++] : s2[p2++]);
for(; p1 <= n; p1++, tot++) C[tot+1] = C[tot] + s1[p1];
for(; p2 <= m; p2++, tot++) C[tot+1] = C[tot] + s2[p2];
return tot = convex(C, tot);
}
int main(){
read(n), read(m), read(q);
for(int i = 1; i <= n; i++) read(A[i].x), read(A[i].y);
n = convex(A, n);
for(int i = 1; i <= m; i++)
read(B[i].x), read(B[i].y), B[i].x = -B[i].x, B[i].y = -B[i].y;
m = convex(B, m);
int len = Minkowski(A, B, C, n, m);
while(q--){
ll x, y; read(x), read(y);
printf("%d\n", inconvex((P){x, y}, C, len));
}
return 0;
}

「JSOI2018」战争的更多相关文章

  1. 【LOJ】#2549. 「JSOI2018」战争

    题解 仔细分析了一下,如果写个凸包+每次暴力半平面交可以得到70分,正解有点懵啊 然后用到了一个非常结论,但是大概出题人觉得江苏神仙一个个都可以手证的结论吧.. Minkowski sum 两个凸包分 ...

  2. 「JLOI2015」战争调度 解题报告

    「JLOI2015」战争调度 感觉一到晚上大脑就宕机了... 题目本身不难,就算没接触过想想也是可以想到的 这个满二叉树的深度很浅啊,每个点只会和它的\(n-1\)个祖先匹配啊 于是可以暴力枚举祖先链 ...

  3. 「JLOI2015」战争调度

    题目 [内存限制:256 MiB][时间限制:1000 ms] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有 ...

  4. LOJ 2550 「JSOI2018」机器人——找规律+DP

    题目:https://loj.ac/problem/2550 只会写20分的搜索…… #include<cstdio> #include<cstring> #include&l ...

  5. LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流

    题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...

  6. LOJ 2551 「JSOI2018」列队——主席树+二分

    题目:https://loj.ac/problem/2551 答案是排序后依次走到 K ~ K+r-l . 想维护一个区间排序后的结果,使得可以在上面二分.求和:二分可以知道贡献是正还是负. 于是想用 ...

  7. LOJ 2547 「JSOI2018」防御网络——思路+环DP

    题目:https://loj.ac/problem/2547 一条树边 cr->v 会被计算 ( n-siz[v] ) * siz[v] 次.一条环边会被计算几次呢?于是去写了斯坦纳树. #in ...

  8. LOJ #2547 Luogu P4517「JSOI2018」防御网络

    好像也没那么难写 LOJ #2547 Luogu P4517 题意 在一棵点仙人掌中等概率选择一个点集 求选出点集的斯坦纳树大小的期望 定义点仙人掌为不存在一个点在多个简单环中的连通图 斯坦纳树为在原 ...

  9. LOJ 2546 「JSOI2018」潜入行动——树形DP

    题目:https://loj.ac/problem/2546 dp[ i ][ j ][ 0/1 ][ 0/1 ] 表示 i 子树,用 j 个点,是否用 i , i 是否被覆盖. 注意 s1<= ...

随机推荐

  1. Django框架下的小人物--Cookie

    1. 什么是Cookie,它的用途是什么? Cookies是一些存储在用户电脑上的小文件.它是被设计用来保存一些站点的用户数据,这样能够让服务器为这样的用户定制内容,后者页面代码能够获取到Cookie ...

  2. Ubuntu: HDF5报错: HDF5 header version与HDF5 library不匹配

    今天在执行一个用到hdf5的python脚本时,遇到如下错误 Warning! ***HDF5 library version mismatched error*** The HDF5 header ...

  3. npm_一个有意思的npm包

    $ npm install yosay const yosay = require('yosay'); console.log(yosay('Hello, and welcome to my fant ...

  4. [MySQL FAQ]系列 — EXPLAIN结果中哪些信息要引起关注

    我们使用EXPLAIN解析SQL执行计划时,如果有下面几种情况,就需要特别关注下了: 首先看下 type 这列的结果,如果有类型是 ALL 时,表示预计会进行全表扫描(full table scan) ...

  5. ubuntu git 简单入门【转】

    转自:http://blog.chinaunix.net/uid-20718384-id-3334859.html 1. 安装 sudo apt-get install git-core 2.  初始 ...

  6. 003_Mac挂载NTFS移动硬盘读取VMware虚拟机文件

    一.Mac 挂载NTFS移动硬盘进行读写操作 (Read-only file system) 注意如下图所示先卸载,然后按照下图的命令进行挂载.然后cd /opt/003_vm/   &&am ...

  7. centos7 部署镜像仓库 harbor

    =============================================== 2018/4/16_第2次修改                       ccb_warlock 更新 ...

  8. 关于move

    procedure TForm4.Button1Click(Sender: TObject); var //动态数组 bytes1,bytes2: TBytes; //静态数组 bytes3,byte ...

  9. Java编程思想第四版第二章练习题答案

    练习1:创建一个类,它包含一个int域和一个char域,它们都没有被初始化.将他们的值打印出来,以验证Java执行了默认初始化 public class JavaThinking { private ...

  10. 【hihoCoder】#1513 : 小Hi的烦恼

    题解 我会五维数点辣 只要用个bitset乱搞就好了 记录一下rk[i][j]表示第j科排名为i的是谁 用30000 * 5个大小为30000的bitset s[i][j]是一个bitset表示第j科 ...