洛谷 P4175: bzoj 1146: [CTSC2008]网络管理
令人抓狂的整体二分题。根本原因还是我太菜了。
在学校写了一个下午写得头晕,回家里重写了一遍,一个小时就写完了……不过还是太慢。
题目传送门:洛谷P4175。
题意简述:
一棵 \(n\) 个结点的树,每个点有点权。
有 \(m\) 次操作,每个操作要么是更改单点点权,要么是查询树链上第 \(k\) 大点权。
题解:
树套树固然可以,但是整体二分也很好。
整体二分就是对于所有的询问一起二分答案,在二分区间范围内的查询和修改一并下传。
这题把整体二分基础题的操作搬到了链上,但是实现方法并没有太大不同。
初始点权看成增加点权,插入在所有操作的最前面即可。
更改点权可以看成删除点权再增加点权,变成两次修改即可。
这题整体二分要求第 \(k\) 大,考虑二分出的答案 \(mid\),将大于 \(mid\) 的修改转成单点权值 \(\pm 1\),
而对于树链查询第 \(k\) 大,则转化成链上权值之和是否等于 \(k\)。
写整体二分题永远要注意二分的条件,我的条件是,链上大于 \(mid\) 的点数小于 \(k\) 个则答案小于等于 \(mid\),否则答案大于 \(mid\)。
单点修改,树链查询要是还用树剖就太naive了,套路转化:
考虑每个节点维护到根的路径上的信息,那么单点修改就变成子树修改,链查就变成四个单点查了(需要求LCA)。
而子树是一个区间,区间加法,单点查询;再使用树状数组差分技巧转化成单点差分,区间前缀和。
注意到还要求LCA,直接在DFS的时候用Tarjan处理就好了。
关于判断无解:当然可以直接处理掉……不过这样就必须求树链长度了。
我的方法是,往权值里面加一个-1,如果答案是-1,则真实答案应该是无解。
我的代码还离散化了权值,其实没用……
其他恶心的地方就是整体二分基本功了,太弱了调了好久……注意循环变量是指向真实操作的下标的指针还是真实操作的下标,如果你写结构体当我没说。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int MN=80005;
const int MM=110005;
const int MQ=140005;
int n,m,q,w[MN],d[MQ],c;
int o[MQ],a[MQ],b[MQ],p[MQ],lc[MQ],ans[MQ];
int eh[MN],qh[MN],nxt[MM*2],to[MM*2],tot;
inline void ins(int*h,int x,int y){nxt[++tot]=h[x],to[tot]=y,h[x]=tot;}
int ld[MN],rd[MN],faz[MN],dfc;
int fa[MN];int ff(int x){return fa[x]?fa[x]=ff(fa[x]):x;}
void dfs(int u,int f){
faz[u]=f,ld[u]=++dfc;
for(int i=eh[u];i;i=nxt[i])if(to[i]!=f)dfs(to[i],u),fa[to[i]]=u;
for(int i=qh[u];i;i=nxt[i])if(lc[to[i]])lc[to[i]]=ff(lc[to[i]]);else lc[to[i]]=u;
rd[u]=dfc;
}
int B[MN];
inline void I(int i,int x){for(;i<=n;i+=i&-i)B[i]+=x;}
inline int Q(int i){int a=0;for(;i;i-=i&-i)a+=B[i];return a;}
int t[MQ];
void s(int l,int r,int L,int R){
if(l>r)return;
if(L==R){for(int i=l;i<=r;++i)ans[p[i]]=L;return;}
int m=L+R>>1,p1=l-1,p2=r+1;
for(int j=l,i;j<=r;++j){
if(o[i=p[j]]>0){
int x=Q(ld[a[i]])+Q(ld[b[i]])-Q(ld[lc[i]])-Q(ld[faz[lc[i]]]);
if(x<o[i])o[i]-=x,t[++p1]=i;
else t[--p2]=i;
}
else if(b[i]>m){
I(ld[a[i]],o[i]?-1:1),I(rd[a[i]]+1,o[i]?1:-1);
t[--p2]=i;
}
else t[++p1]=i;
}
for(int i=l;i<=r;++i)if(o[p[i]]<=0&&b[p[i]]>m)I(ld[a[p[i]]],o[p[i]]?1:-1),I(rd[a[p[i]]]+1,o[p[i]]?-1:1);
reverse(t+p2,t+r+1),memcpy(p+l,t+l,r-l+1<<2);
s(l,p1,L,m),s(p2,r,m+1,R);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%d",&w[i]),o[++q]=0,a[q]=i,b[q]=w[i],p[q]=q;
for(int i=1,x,y;i<n;++i)scanf("%d%d",&x,&y),ins(eh,x,y),ins(eh,y,x);
for(int i=1;i<=m;++i){
++q,scanf("%d%d%d",&o[q],&a[q],&b[q]),p[q]=q;
if(!o[q])o[++q]=-1,a[q]=a[q-1],b[q]=w[a[q-1]],p[q]=q,w[a[q-1]]=b[q-1];
}
for(int i=1;i<=q;++i)if(o[i]>0)ins(qh,a[i],i),ins(qh,b[i],i);else d[++c]=b[i];
d[++c]=-1;sort(d+1,d+c+1);c=unique(d+1,d+c+1)-d-1;
for(int i=1;i<=q;++i)if(o[i]<=0)b[i]=lower_bound(d+1,d+c+1,b[i])-d;
dfs(1,0),s(1,q,1,c);
for(int i=1;i<=q;++i)if(o[i]>0)ans[i]==1?puts("invalid request!"):printf("%d\n",d[ans[i]]);
return 0;
}
// 20:08 - 21:03
洛谷 P4175: bzoj 1146: [CTSC2008]网络管理的更多相关文章
- BZOJ 1146: [CTSC2008]网络管理Network [树上带修改主席树]
1146: [CTSC2008]网络管理Network Time Limit: 50 Sec Memory Limit: 162 MBSubmit: 3522 Solved: 1041[Submi ...
- BZOJ 1146: [CTSC2008]网络管理Network 树链剖分+线段树+平衡树
1146: [CTSC2008]网络管理Network Time Limit: 50 Sec Memory Limit: 162 MBSubmit: 870 Solved: 299[Submit] ...
- BZOJ 1146: [CTSC2008]网络管理Network( 树链剖分 + 树状数组套主席树 )
树链剖分完就成了一道主席树裸题了, 每次树链剖分找出相应区间然后用BIT+(可持久化)权值线段树就可以完成计数. 但是空间问题很严重....在修改时不必要的就不要新建, 直接修改原来的..详见代码. ...
- 洛谷 P4298: bzoj 1143: [CTSC2008]祭祀
题目传送门:洛谷 P4298. 题意简述: 给定一个 \(n\) 个点,\(m\) 条边的简单有向无环图(DAG),求出它的最长反链,并构造方案. 最长反链:一张有向无环图的最长反链为一个集合 \(S ...
- bzoj 1146 [CTSC2008]网络管理Network
很久之前写过 count on the tree. 然后一直不懂树状数组是怎么套上这个主席树的. 看了两小时发现它套的就是个权值线段树, 看不出来可持久化在哪里. 因为动态开点所以空间nlog2n. ...
- BZOJ 1146: [CTSC2008]网络管理Network 带修改主席树_树套树_DFS序
Description M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个 部门之间协同工作,公司搭建了一个连接整个公司的通信网络.该网络的结构由N个路 ...
- [BZOJ 1146] [CTSC2008]网络管理Network(树状数组+主席树)
题目描述 M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个部门之间协同工作,公司搭建了一个连接整个公司的通信网络.该网络的结构由N个路由器和N-1条高 ...
- 洛谷 P4175 [CTSC2008]网络管理 解题报告
P4175 [CTSC2008]网络管理 题目描述 带修改树上链的第\(k\)大 输入输出格式 输入格式: 第一行为两个整数\(N\)和\(Q\),分别表示路由器总数和询问的总数. 第二行有\(N\) ...
- 洛谷P4175 - [CTSC2008]网络管理
Portal Description 给出一棵\(n(n\leq8\times10^4)\)个点的带点权的树,进行\(m(m\leq8\times10^4)\)次操作,操作有两种: 修改一个点的点权. ...
随机推荐
- Opera官网打不开 下载Opera最新版本的实际地址
目前Opera官网可以打开,但是点下载时就会出错,国内无法访问Opera的下载地址,无法通过官网直接下载Opera浏览器.下面提供下载的方式. 一.通过官方的ftp站点下载 FTP地址为 http:/ ...
- mybatis中@Param的使用
@Param:当映射器方法需要多个参数时,这个注解可以被用于:给映射器方法中的每个参数来取一个名字.否则,多参数将会以它们的顺序位置和SQL语句中的表达式进行映射,这是默认的. 语法要求:若使用 ...
- widows终端远程连接Linux服务器
一.前言 为什么不是远程连接Linux服务器? 因为我不会,远程连接window我就用电脑自带的“远程桌面连接”. 以下所述都是在CentOS操作系统下的. 服务器刚换成Linux的时候很迷茫,感觉无 ...
- python读取写入内存方法SringIO,BytesIO
python中不仅仅可以在磁盘中写入文件,还允许直接在内存中直接写入数据:需要借助StringIO和BytesIO来实现: 1.直接操作StringIO from io import StringIO ...
- SDOI2017遗忘的集合
题面链接 咕咕咕 题外话 为了这道题我敲了\(MTT\).多项式求逆.多项式\(ln\)等模板,搞了将近一天. sol 最近懒得写题解啊,随便搞搞吧. 看到这个就是生成函数套上去. \[F(x)=\p ...
- CF662C Binary Table 【状压 + FWT】
题目链接 CF662C 题解 行比较少,容易想到将每一列的状态压缩 在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一 所以我们只需求出每一种操作的答案 ...
- WEB入门.六 盒子模型
学习内容 CSS盒子模型 盒子之间的关系 页面元素定位 能力目标 理解盒子模型 理解内容与表现分离的优点 理解并掌握盒子之间的关系 理解并掌握绝对定位与相对定位的用法 本章简介 上一章节中已经讲解了页 ...
- Android 图片加载框架 Glide 的用法
https://github.com/bumptech/glide Android图片加载框架最全解析(一),Glide的基本用法http://blog.csdn.net/guolin_blog/ar ...
- Android实现动态改变屏幕方向(Landscape & Portrait)
1.AndroidManifest.xml: <activity> android:screenOrientation="portrait" ... 2.xx.java ...
- 个人在 laravel 开发中使用到的一些技巧(持续更新)
1.更高效率地查询:使用批量查询代替 foreach 查询(多次 io 操作转换为一次 io操作) 如果想要查看更详尽的介绍,可以看看这篇文章 什么是 N+1 问题,以及如何解决 Laravel 的 ...