Antenna Placement
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6991   Accepted: 3466

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

Source

无向二分图的最小路径覆盖 = 顶点数 – 最大二分匹配数/2 ;
详情,点这里
 #include<stdio.h>
#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
bool map[][] ;
int vis[][] ;
int a[][] ;
int girl [] ;
bool sta[] ;
int cnt ;
int row , col ;
char st[] ;
int move[][] = { , , , , - , , , -} ; bool hungary (int x)
{
for (int i = ; i <= cnt ; i++) {
if (map[x][i] && sta[i] == false) {
sta[i] = true ;
if (girl[i] == || hungary (girl[i])) {
girl[i] = x ;
return true ;
}
}
}
return false ;
} int main ()
{
// freopen ("a.txt" , "r" , stdin) ;
int T ;
cin >> T ;
while (T--) {
scanf ("%d%d" , &row , &col) ;
getchar () ;
cnt = ;
memset (vis , - , sizeof(vis)) ;
memset (map , , sizeof(map)) ;
memset (a , - , sizeof(a)) ;
memset (girl , , sizeof(girl)) ;
for (int i = ; i < row ; i++) {
gets (st) ;
for (int j = ; j < col ; j++) {
if (st[j] == '*') {
a[i + ][j + ] = + cnt++;
}
}
}
/* for (int i = 1 ; i <= row ; i++) {
for (int j = 1 ; j <= col ; j++) {
printf ("%d " , a[i][j]);
}
puts ("") ;
}*/
for (int i = ; i <= row ; i++) {
for (int j = ; j <= col ; j++) {
if (a[i][j] != -) {
for (int k = ; k < ; k++) {
int x = i + move[k][] ;
int y = j + move[k][] ;
if (a[x] [y] != -)
map[ a[i][j] ] [ a[x][y] ] = ;
}
}
}
}
/* for (int i = 1 ; i <= cnt ; i++) {
for (int j = 1 ; j <= cnt ; j++) {
printf ("%d " , map[i][j]) ;
}
puts ("") ;
}*/
int all = ;
for (int i = ; i <= cnt ; i++) {
memset (sta , , sizeof(sta)) ;
if (hungary (i))
all ++ ;
}
// printf ("cnt = %d , all = %d\n" , cnt , all) ;
printf ("%d\n" , cnt - all / ) ;
}
return ;
}

Antenna Placement(匈牙利算法 ,最少路径覆盖)的更多相关文章

  1. poj3020 Antenna Placement 匈牙利算法求最小覆盖=最大匹配数(自身对应自身情况下要对半) 小圈圈圈点

    /** 题目:poj3020 Antenna Placement 链接:http://poj.org/problem?id=3020 题意: 给一个由'*'或者'o'组成的n*m大小的图,你可以用一个 ...

  2. POJ 3020 Antenna Placement 匈牙利算法,最大流解法 难度:1

    http://poj.org/problem?id=3020 #include <cstdio> #include <cstring> #include <vector& ...

  3. HDU 6311 最少路径覆盖边集 欧拉路径

    Cover Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  4. poj 1422 Air Raid 最少路径覆盖

    题目链接:http://poj.org/problem?id=1422 Consider a town where all the streets are one-way and each stree ...

  5. poj3041 Asteroids 匈牙利算法 最小点集覆盖问题=二分图最大匹配

    /** 题目:poj3041 Asteroids 链接:http://poj.org/problem?id=3041 题意:给定n*n的矩阵,'X'表示障碍物,'.'表示空格;你有一把枪,每一发子弹可 ...

  6. 匈牙利算法实战codevs1022覆盖

    1022 覆盖    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Description 有一个N×M的单位方格中 ...

  7. POJ-3020 Antenna Placement---二分图匹配&最小路径覆盖&建图

    题目链接: https://vjudge.net/problem/POJ-3020 题目大意: 一个n*m的方阵 一个雷达可覆盖两个*,一个*可与四周的一个*被覆盖,一个*可被多个雷达覆盖问至少需要多 ...

  8. HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)

    题意 给个无向图,无重边和自环,问最少需要多少路径把边覆盖了.并输出相应路径 分析 首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是  max(1,度数为奇数点的个数/2).然后就是求欧拉路 ...

  9. Antenna Placement POJ - 3020 二分图匹配 匈牙利 拆点建图 最小路径覆盖

    题意:图没什么用  给出一个地图 地图上有 点 一次可以覆盖2个连续 的点( 左右 或者 上下表示连续)问最少几条边可以使得每个点都被覆盖 最小路径覆盖       最小路径覆盖=|G|-最大匹配数 ...

随机推荐

  1. 总体最小二乘(TLS)

    对于见得多了的东西,我往往就习以为常了,慢慢的就默认了它的存在,而不去思考内在的一些道理.总体最小二乘是一种推广最小二乘方法,本文的主要内容参考张贤达的<矩阵分析与应用>. 1. 最小二乘 ...

  2. Java语言词法分析器

    一.实验目的 通过设计编制调试一个具体的词法分析程序,加深对词法分析原理的理解.并掌握在对程序设计语言源程序进行扫描过程中将其分解为各类单词的词法分析方法. 编制一个读单词过程,从输入的源程序中,识别 ...

  3. document.cookie打不出来cookies

    比如session这种设置,都是设置了HttpOnly 导致document.cookie看不到,这和xss  跨站脚本攻击(Cross Site Scripting)

  4. java操作mysql中的编码问题解决

    要注意以下几点 1.在连接mysql数据库时 jdbc:mysql://localhost:3306/xiaonei?useUnicode=true&characterEncoding=utf ...

  5. zoj3888 找第二大

    题目简化后最终要求的就是第二大的数.但是由于数据较大,不能直接求.可以先预处理,求出所有情况. #include<stdio.h> #include<string.h> #in ...

  6. BZOJ-1699 Balanced Lineup 线段树区间最大差值

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...

  7. 【poj1236】 Network of Schools

    http://poj.org/problem?id=1236 (题目链接) 题意 给定一个有向图,求:1.至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点:2.至少要加多少条边,才能使得从任 ...

  8. TYVJ1305 最大子序和

    描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入 ...

  9. 以一个权限系统来告别WebForm —开篇

     前言: 当今是互联网的时代,我们己经阻止不了它的发展了,只有跟上脚步,才不会被抛弃,松散了这么久,该紧紧了.  背景: 我之所以说以一个权限应用系统来告别我的WebForm内部系统的生涯,是缘于我自 ...

  10. HackerRank Ice Cream Parlor

    传送门 Ice Cream Parlor Authored by dheeraj on Mar 21 2013 Problem Statement Sunny and Johnny together ...