ABSIndividual.py

 import numpy as np
import ObjFunction class ABSIndividual: '''
individual of artificial bee swarm algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for artificial bee swarm algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

ABS.py

 import numpy as np
from ABSIndividual import ABSIndividual
import random
import copy
import matplotlib.pyplot as plt class ArtificialBeeSwarm: '''
the class for artificial bee swarm algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.foodSource = self.sizepop / 2
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of abs
'''
for i in xrange(0, self.foodSource):
ind = ABSIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.foodSource):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def employedBeePhase(self):
'''
employed bee phase
'''
for i in xrange(0, self.foodSource):
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == i:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[i])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
vi.calculateFitness()
if vi.fitness > self.fitness[i]:
self.population[i] = vi
self.fitness[i] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[i].trials += 1 def onlookerBeePhase(self):
'''
onlooker bee phase
'''
accuFitness = np.zeros((self.foodSource, 1))
maxFitness = np.max(self.fitness) for i in xrange(0, self.foodSource):
accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1 for i in xrange(0, self.foodSource):
for fi in xrange(0, self.foodSource):
r = random.random()
if r < accuFitness[i]:
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == fi:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[fi])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[fi].trials += 1
break def scoutBeePhase(self):
'''
scout bee phase
'''
for i in xrange(0, self.foodSource):
if self.population[i].trials > self.params[0]:
self.population[i].generate()
self.population[i].trials = 0
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the abs algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while self.t < self.MAXGEN - 1:
self.t += 1
self.employedBeePhase()
self.onlookerBeePhase()
self.scoutBeePhase()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
print("Optimal function value is: %f; " % self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def printResult(self):
'''
plot the result of abs algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Artificial Bee Swarm algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
abs = ABS(60, 25, bound, 1000, [100, 0.5])
abs.solve()

ObjFunction见简单遗传算法-python实现

人工蜂群算法-python实现的更多相关文章

  1. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

  2. 人工鱼群算法-python实现

    AFSIndividual.py import numpy as np import ObjFunction import copy class AFSIndividual: "" ...

  3. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  4. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  5. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  6. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  7. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 最长回文子串Manacher算法模板

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...

  2. 通过JDBC进行简单的增删改查

    通过JDBC进行简单的增删改查(以MySQL为例) 目录 前言:什么是JDBC 一.准备工作(一):MySQL安装配置和基础学习 二.准备工作(二):下载数据库对应的jar包并导入 三.JDBC基本操 ...

  3. C++基础笔记(二)C++对C的扩展

    Xcode创建C++项目 1.新建一个MAC工程(command line tool) 2.导入头文件 3.修改文件后缀(*.m-->*.mm) 4.修改主函数中的OC代码为C++的代码   动 ...

  4. Jenkins学习七:Jenkins的授权和访问控制

    默认的Jenkins不包含任何的安全检查,任何人可以修改Jenkins设置,job和启动build等.显然地在大规模的公司需要多个部门一起协调工作的时候,没有任何安全检查会带来很多的问题. 在系统管理 ...

  5. 关于eclipse入门开发c/c++文章推荐

    1. 关于编译说明. http://www.ibm.com/developerworks/cn/linux/opensource/os-ecc/ 2. 关于快捷键与代码阅读 http://www.cn ...

  6. maya获取邻接顶点的一个问题

    maya网格数据结构允许"非流形"的存在,于是,这种数据结构无法按顺序给出一个点的邻接顶点. 于是,MItMeshVertex::getConnectedVertices函数返回的 ...

  7. Maya FEM节点框架完成

    这几天把物理模拟框架移植到maya之中了. maya编程有一点比较关键,就是要让自己的程序逻辑适应maya的节点求值机制.在物理模拟中,往往需要进行时间积分,对此我的解决办法是,写一个节点rigSim ...

  8. scanf和cin的差异

    scanf和cin的差异 引例:http://www.cnblogs.com/shenben/p/5516996.html 大家都知道,在C++中有两种输入.输出方式—scanf和cin,但是,它们之 ...

  9. 【CSS】css网页背景图片设置

    刚学CSS,了解了下网页背景图设置,顺便记录下. 下面主要是实现背景图位置保持不变,即不随滚动条动而动的功能. body { background-image:url(images/bck.png); ...

  10. vim常用命令汇总

    vim常用命令汇总: http://www.cnblogs.com/softwaretesting/archive/2011/07/12/2104435.html 定位 本行第一个字符 ctrl+$ ...