人工蜂群算法-python实现
ABSIndividual.py
import numpy as np
import ObjFunction class ABSIndividual: '''
individual of artificial bee swarm algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for artificial bee swarm algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
ABS.py
import numpy as np
from ABSIndividual import ABSIndividual
import random
import copy
import matplotlib.pyplot as plt class ArtificialBeeSwarm: '''
the class for artificial bee swarm algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.foodSource = self.sizepop / 2
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of abs
'''
for i in xrange(0, self.foodSource):
ind = ABSIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.foodSource):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def employedBeePhase(self):
'''
employed bee phase
'''
for i in xrange(0, self.foodSource):
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == i:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[i])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
vi.calculateFitness()
if vi.fitness > self.fitness[i]:
self.population[i] = vi
self.fitness[i] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[i].trials += 1 def onlookerBeePhase(self):
'''
onlooker bee phase
'''
accuFitness = np.zeros((self.foodSource, 1))
maxFitness = np.max(self.fitness) for i in xrange(0, self.foodSource):
accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1 for i in xrange(0, self.foodSource):
for fi in xrange(0, self.foodSource):
r = random.random()
if r < accuFitness[i]:
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == fi:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[fi])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[fi].trials += 1
break def scoutBeePhase(self):
'''
scout bee phase
'''
for i in xrange(0, self.foodSource):
if self.population[i].trials > self.params[0]:
self.population[i].generate()
self.population[i].trials = 0
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the abs algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while self.t < self.MAXGEN - 1:
self.t += 1
self.employedBeePhase()
self.onlookerBeePhase()
self.scoutBeePhase()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
print("Optimal function value is: %f; " % self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def printResult(self):
'''
plot the result of abs algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Artificial Bee Swarm algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__":
bound = np.tile([[-600], [600]], 25)
abs = ABS(60, 25, bound, 1000, [100, 0.5])
abs.solve()
ObjFunction见简单遗传算法-python实现。
人工蜂群算法-python实现的更多相关文章
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- 人工鱼群算法-python实现
AFSIndividual.py import numpy as np import ObjFunction import copy class AFSIndividual: "" ...
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- MySQL数据库学习笔记(九)----JDBC的ResultSet接口(查询操作)、PreparedStatement接口重构增删改查(含SQL注入的解释)
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...
- Android系列之Fragment(四)----ListFragment的使用
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...
- JMeter学习(六)集合点
JMeter也有像LR中的集合点,本篇就来介绍下JMeter的集合点如何去实现. JMeter里面的集合点通过添加定时器来完成. 注意:集合点的位置一定要在Sample之前. 集合点:简单来理解一下, ...
- Android SQLite (五 ) 全面详解(三)
SQLite约束 约束是在表的数据列上强制执行的规则.这些是用来限制可以插入到表中的数据类型.这确保了数据库中数据的准确性和可靠性.约束可以是列级或表级.列级约束仅适用于列,表级约束被应用到整个表. ...
- Spring Mvc 在非controller层 实现获取request对象
一般我们在Controller层,会编写类似这样的方法 @Controller @RequestMapping(value="/detail") public class GetU ...
- jquery堆栈与队列
期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待期待
- window7 右键菜单显示-》在此处打开命令窗口
window7 右键菜单显示->在此处打开命令窗口: 注册表中: HKEY_CLASSES_ROOT\Directory\Background\shell\cmd下将[Extended]重命名或 ...
- Linux下CGroup使用说明梳理
CGroup 介绍CGroup 是 Control Groups 的缩写,是 Linux 内核提供的一种可以限制.记录.隔离进程组 (process groups) 所使用的物力资源 (如 cpu m ...
- 06SpringMvc_适配器
适配器的主要功能是去找控制器.Action实现了什么接口 本文案例实现的功能是:在页面上输入中文名字,然后在另外一个网页上显示出来. 案例结构:
- 基于Nodejs生态圈的TypeScript+React开发入门教程
基于Nodejs生态圈的TypeScript+React开发入门教程 概述 本教程旨在为基于Nodejs npm生态圈的前端程序开发提供入门讲解. Nodejs是什么 Nodejs是一个高性能Ja ...