ABSIndividual.py

 import numpy as np
import ObjFunction class ABSIndividual: '''
individual of artificial bee swarm algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for artificial bee swarm algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

ABS.py

 import numpy as np
from ABSIndividual import ABSIndividual
import random
import copy
import matplotlib.pyplot as plt class ArtificialBeeSwarm: '''
the class for artificial bee swarm algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.foodSource = self.sizepop / 2
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of abs
'''
for i in xrange(0, self.foodSource):
ind = ABSIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.foodSource):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def employedBeePhase(self):
'''
employed bee phase
'''
for i in xrange(0, self.foodSource):
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == i:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[i])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
vi.calculateFitness()
if vi.fitness > self.fitness[i]:
self.population[i] = vi
self.fitness[i] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[i].trials += 1 def onlookerBeePhase(self):
'''
onlooker bee phase
'''
accuFitness = np.zeros((self.foodSource, 1))
maxFitness = np.max(self.fitness) for i in xrange(0, self.foodSource):
accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1 for i in xrange(0, self.foodSource):
for fi in xrange(0, self.foodSource):
r = random.random()
if r < accuFitness[i]:
k = np.random.random_integers(0, self.vardim - 1)
j = np.random.random_integers(0, self.foodSource - 1)
while j == fi:
j = np.random.random_integers(0, self.foodSource - 1)
vi = copy.deepcopy(self.population[fi])
# vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
# vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
# for k in xrange(0, self.vardim):
# if vi.chrom[k] < self.bound[0, k]:
# vi.chrom[k] = self.bound[0, k]
# if vi.chrom[k] > self.bound[1, k]:
# vi.chrom[k] = self.bound[1, k]
vi.chrom[
k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
if vi.chrom[k] < self.bound[0, k]:
vi.chrom[k] = self.bound[0, k]
if vi.chrom[k] > self.bound[1, k]:
vi.chrom[k] = self.bound[1, k]
vi.calculateFitness()
if vi.fitness > self.fitness[fi]:
self.population[fi] = vi
self.fitness[fi] = vi.fitness
if vi.fitness > self.best.fitness:
self.best = vi
else:
self.population[fi].trials += 1
break def scoutBeePhase(self):
'''
scout bee phase
'''
for i in xrange(0, self.foodSource):
if self.population[i].trials > self.params[0]:
self.population[i].generate()
self.population[i].trials = 0
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the abs algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while self.t < self.MAXGEN - 1:
self.t += 1
self.employedBeePhase()
self.onlookerBeePhase()
self.scoutBeePhase()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
print("Optimal function value is: %f; " % self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def printResult(self):
'''
plot the result of abs algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Artificial Bee Swarm algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
abs = ABS(60, 25, bound, 1000, [100, 0.5])
abs.solve()

ObjFunction见简单遗传算法-python实现

人工蜂群算法-python实现的更多相关文章

  1. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

  2. 人工鱼群算法-python实现

    AFSIndividual.py import numpy as np import ObjFunction import copy class AFSIndividual: "" ...

  3. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  4. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  5. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  6. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  7. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. MySQL遇到check the manual that corresponds to your MySQL server version for the right syntax错误

    用MySQL新建了一个Order表,插入了一条数据.总是显示 You have an error in your SQL syntax; check the manual thatcorrespond ...

  2. 第23章 SEH结构化异常处理(1)_系统SEH机制

    23.1 基础知识 23.1.1 Windows下的软件异常 (1)中断和异常 ①中断是由外部硬件设备或异步事件产生的 ②异常是由内部事件产生的,可分为故障.陷阱和终止三类. (2)两种异常处理机制: ...

  3. mysql查询语句包含有关键字

    查询mysql的时候,有时候mysql表名或者列名会有关键字.这时候查询会有错误.例如表名是order,查询时候会出错. 简单的办法是sql语句里表名或者列名加上`[tab键上面]来加以区别,例如se ...

  4. win7系统电脑连接小米蓝牙音箱

    一.买好蓝牙适配器,插到电脑上. 二.右下角工具栏找到蓝牙图标 三.右键这个图标,选择'显示Bluetooth设备' 四.找到小米蓝牙音箱 'NDZ-030-AA' 五.双击打开它,然后选择'服务'选 ...

  5. DevExpress主从表 按组分页一组不足一页为一页--以此记录

    本文的主要是说明Dev的报表的主从表,主从表的每一组显示在一页,当一组超出一页,第二页只显示第一组的. 一.每上报表设置图 简单设计图如上 二.后台代码 报表页代码 public partial cl ...

  6. 安装和使用Karma-Jasmine进行自动化测试

    注意:本文中出现的资料链接.karma的插件安装等,均可能需要翻$墙后才能正确执行. Jasmine是一个Javascript的测试工具,在Karma上运行Jasmine可完成Javascript的自 ...

  7. HTML语义化之常见模块

    用合理的HTML标记以及特有的属性去格式化文档内容. 浏览器会根据标签的语义给定一个默认的样式. 判断网页标签语义是否良好的一个简单方法就是:去掉样式,看网页结构是否组织良好有序,是否仍然有很好的可读 ...

  8. php基础32:正则匹配-修饰符

    <?php //正则表达式--修饰符一般放在//的外面 //1. i 表示不区分大小写 $model = "/php/"; $string = "php" ...

  9. 储存与更新 access_token

    做微信的项目,一开始就是 access_token 的申请,微信文档上写的比较清楚: 1.为了保密appsecrect,第三方需要一个access_token获取和刷新的中控服务器.而其他业务逻辑服务 ...

  10. MySQL server has gone away的解决方法

    用Python写了一个http服务,需要从mysql读数据库,第一天还好好的,第二天突然不行了.报错如下: pymysql.err.OperationalError: (2006, 'MySQL se ...