hdu 3507 斜率dp
不好理解,先多做几个再看
此题是很基础的斜率DP的入门题。
题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M
让我们求这个费用的最小值。
设dp[i]表示输出前i个的最小费用,那么有如下的DP方程:
dp[i]= min{ dp[j]+(sum[i]-sum[j])^2 +M } 0<j<i
其中 sum[i]表示数字的前i项和。
相信都能理解上面的方程。
直接求解上面的方程的话复杂度是O(n^2)
对于500000的规模显然是超时的。下面讲解下如何用斜率优化DP使得复杂度降低一维。
我们首先假设在算 dp[i]时,k<j ,j点比k点优。
也就是
dp[j]+(sum[i]-sum[j])^2+M <= dp[k]+(sum[i]-sum[k])^2+M;
所谓j比k优就是DP方程里面的值更小
对上述方程进行整理很容易得到:
[(dp[j]+sum[j]*sum[j])-(dp[k]+sum[k]*sum[k])] / 2(sum[j]-sum[k]) <=sum[i].
注意整理中要考虑下正负,涉及到不等号的方向。
左边我们发现如果令:yj=dp[j]+sum[j]*sum[j] xj=2*sum[j]
那么就变成了斜率表达式:(yj-yk)/(xj-xk) <= sum[i];
而且不等式右边是递增的。
所以我们可以看出以下两点:我们令g[k,j]=(yj-yk)/(xj-xk)
第一:如果上面的不等式成立,那就说j比k优,而且随着i的增大上述不等式一定是成立的,也就是对i以后算DP值时,j都比k优。那么k就是可以淘汰的。
第二:如果 k<j<i 而且 g[k,j]>g[j,i] 那么 j 是可以淘汰的。
假设 g[j,i]<sum[i]就是i比j优,那么j没有存在的价值
相反如果 g[j,i]>sum[i] 那么同样有 g[k,j]>sum[i] 那么 k比 j优 那么 j 是可以淘汰的
所以这样相当于在维护一个下凸的图形,斜率在逐渐增大。
通过一个队列来维护。
于是对于这题我们对于斜率优化做法可以总结如下:
1,用一个单调队列来维护解集。
2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,c]<g[c,b],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。
3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。
/*
HDU 3507 */ #include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
const int MAXN=; int dp[MAXN];
int q[MAXN];//队列
int sum[MAXN]; int head,tail,n,m;
// dp[i]= min{ dp[j]+M+(sum[i]-sum[j])^2 };
int getDP(int i,int j)
{
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
} int getUP(int j,int k) //yj-yk部分
{
return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
}
int getDOWN(int j,int k)
{
return *(sum[j]-sum[k]);
} int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
while(scanf("%d%d",&n,&m)==)
{
for(int i=;i<=n;i++)
scanf("%d",&sum[i]);
sum[]=dp[]=;
for(int i=;i<=n;i++)
sum[i]+=sum[i-];
head=tail=;
q[tail++]=;
for(int i=;i<=n;i++)
{
//把斜率转成相乘,注意顺序,否则不等号方向会改变的
while(head+<tail && getUP(q[head+],q[head])<=sum[i]*getDOWN(q[head+],q[head]))
head++;
dp[i]=getDP(i,q[head]);
while(head+<tail && getUP(i,q[tail-])*getDOWN(q[tail-],q[tail-])<=getUP(q[tail-],q[tail-])*getDOWN(i,q[tail-]))
tail--;
q[tail++]=i;
}
printf("%d\n",dp[n]);
}
return ;
}
hdu 3507 斜率dp的更多相关文章
- B - Lawrence HDU - 2829 斜率dp dp转移方程不好写
B - Lawrence HDU - 2829 这个题目我觉得很难,难在这个dp方程不会写. 看了网上的题解,看了很久才理解这个dp转移方程 dp[i][j] 表示前面1~j 位并且以 j 结尾分成了 ...
- D - Pearls HDU - 1300 斜率dp+二分
D - Pearls HDU - 1300 这个题目也是一个比较裸的斜率dp,依照之前可以推一下这个公式,这个很好推 这个注意题目已经按照价格升序排列序,所以还是前缀和还是单调的. sum[i] 表示 ...
- hdu 2829 斜率DP
思路:dp[i][x]=dp[j][x-1]+val[i]-val[j]-sum[j]*sum[i]+sum[j]*sum[j]; 其中val[i]表示1~~i是一段的权值. 然后就是普通斜率dp做法 ...
- Print Article HDU - 3507 -斜率优化DP
思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...
- HDU 3507 斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507 斜率优化 DP Print Article
在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...
- hdu 3507 斜率优化
我的第一道斜率优化. 就这道题而言,写出原始的方程: dp[i] = min{ dp[j] + (sum[i]-sum[j])2 + M | j in [0,i) } O(n^2)的复杂度肯定超时, ...
- HDU 3480 斜率dp
Division Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others)Total ...
随机推荐
- js实现鼠标点击input框后里面的内容就消失代码
<!--# <a href="http://www.mianfeimoban.com/texiao_mb/" target="_blank" cla ...
- sql server case when 判断为空
代码如下 select distinct G.* ,(select BUSINESS_NAME from BusinessInfo where BusinessInfo.BUSINESS_BID=G. ...
- java笔记--反射机制之基础总结与详解
一.反射之实例化Class类的5种方式: java的数据类型可以分为两类,即引用类型和原始类型(即基本数据类型). 对于每种类型的对象,java虚拟机会实例化不可变的java.lang.Class对象 ...
- Activity切换后,如i何保存上一个Activit的状态
在Activity切换中一般有三种方式保存上一个Activity的状态数据.一.全局变量 public static int type = 0;二.SharedPreference 保 ...
- mac安装软件管家homebrew
http://www.iwangzheng.com/ 1.简介 众所周知,Mac的操作系统是基于Unix的,在这个系统上大家可以安装一些专门为mac定制开发的软件.这就带来了一个问题,手工编译每个软件 ...
- 为win7添加ubuntu的启动引导项
利用MBRFix删除ubuntu的开机引导界面,恢复成win7引导之后,为win7添加ubuntu的启动引导项: 直接利用EasyBCD添加一个Grub2的引导项即可 参考:http://mathis ...
- 安装mac os x时about a second remaining解决方法
转自: http://www.hongkiat.com/blog/clean-install-mavericks/ During the installation process, you may e ...
- ts tp 高清播放软件 Elecard MPEG Player 6.0.130827
Elecard MPEG Player 6.0.130827 计算机配置不高的情况下,流畅播放高清视频. 缺点是搜索时停顿严重. 包里有注册机. 下载地址 http://pan.baidu.com/s ...
- Java for LeetCode 050 Pow(x, n)
Implement pow(x, n). 解题思路: 直接使用乘法实现即可,注意下,如果n很大的话,递归次数会太多,因此在n=10和n=-10的地方设置一个检查点,JAVA实现如下: static p ...
- codeforces 486B.OR in Matrix 解题报告
题目链接:http://codeforces.com/problemset/problem/486/B 题目意思:给出一个m行n列的矩阵B(每个元素只由0/1组成),问是否可以利用矩阵B,通过一定的运 ...