hdu 3507 斜率dp
不好理解,先多做几个再看
此题是很基础的斜率DP的入门题。
题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M
让我们求这个费用的最小值。
设dp[i]表示输出前i个的最小费用,那么有如下的DP方程:
dp[i]= min{ dp[j]+(sum[i]-sum[j])^2 +M } 0<j<i
其中 sum[i]表示数字的前i项和。
相信都能理解上面的方程。
直接求解上面的方程的话复杂度是O(n^2)
对于500000的规模显然是超时的。下面讲解下如何用斜率优化DP使得复杂度降低一维。
我们首先假设在算 dp[i]时,k<j ,j点比k点优。
也就是
dp[j]+(sum[i]-sum[j])^2+M <= dp[k]+(sum[i]-sum[k])^2+M;
所谓j比k优就是DP方程里面的值更小
对上述方程进行整理很容易得到:
[(dp[j]+sum[j]*sum[j])-(dp[k]+sum[k]*sum[k])] / 2(sum[j]-sum[k]) <=sum[i].
注意整理中要考虑下正负,涉及到不等号的方向。
左边我们发现如果令:yj=dp[j]+sum[j]*sum[j] xj=2*sum[j]
那么就变成了斜率表达式:(yj-yk)/(xj-xk) <= sum[i];
而且不等式右边是递增的。
所以我们可以看出以下两点:我们令g[k,j]=(yj-yk)/(xj-xk)
第一:如果上面的不等式成立,那就说j比k优,而且随着i的增大上述不等式一定是成立的,也就是对i以后算DP值时,j都比k优。那么k就是可以淘汰的。
第二:如果 k<j<i 而且 g[k,j]>g[j,i] 那么 j 是可以淘汰的。
假设 g[j,i]<sum[i]就是i比j优,那么j没有存在的价值
相反如果 g[j,i]>sum[i] 那么同样有 g[k,j]>sum[i] 那么 k比 j优 那么 j 是可以淘汰的
所以这样相当于在维护一个下凸的图形,斜率在逐渐增大。
通过一个队列来维护。
于是对于这题我们对于斜率优化做法可以总结如下:
1,用一个单调队列来维护解集。
2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,c]<g[c,b],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。
3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。
/*
HDU 3507 */ #include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
const int MAXN=; int dp[MAXN];
int q[MAXN];//队列
int sum[MAXN]; int head,tail,n,m;
// dp[i]= min{ dp[j]+M+(sum[i]-sum[j])^2 };
int getDP(int i,int j)
{
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
} int getUP(int j,int k) //yj-yk部分
{
return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
}
int getDOWN(int j,int k)
{
return *(sum[j]-sum[k]);
} int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
while(scanf("%d%d",&n,&m)==)
{
for(int i=;i<=n;i++)
scanf("%d",&sum[i]);
sum[]=dp[]=;
for(int i=;i<=n;i++)
sum[i]+=sum[i-];
head=tail=;
q[tail++]=;
for(int i=;i<=n;i++)
{
//把斜率转成相乘,注意顺序,否则不等号方向会改变的
while(head+<tail && getUP(q[head+],q[head])<=sum[i]*getDOWN(q[head+],q[head]))
head++;
dp[i]=getDP(i,q[head]);
while(head+<tail && getUP(i,q[tail-])*getDOWN(q[tail-],q[tail-])<=getUP(q[tail-],q[tail-])*getDOWN(i,q[tail-]))
tail--;
q[tail++]=i;
}
printf("%d\n",dp[n]);
}
return ;
}
hdu 3507 斜率dp的更多相关文章
- B - Lawrence HDU - 2829 斜率dp dp转移方程不好写
B - Lawrence HDU - 2829 这个题目我觉得很难,难在这个dp方程不会写. 看了网上的题解,看了很久才理解这个dp转移方程 dp[i][j] 表示前面1~j 位并且以 j 结尾分成了 ...
- D - Pearls HDU - 1300 斜率dp+二分
D - Pearls HDU - 1300 这个题目也是一个比较裸的斜率dp,依照之前可以推一下这个公式,这个很好推 这个注意题目已经按照价格升序排列序,所以还是前缀和还是单调的. sum[i] 表示 ...
- hdu 2829 斜率DP
思路:dp[i][x]=dp[j][x-1]+val[i]-val[j]-sum[j]*sum[i]+sum[j]*sum[j]; 其中val[i]表示1~~i是一段的权值. 然后就是普通斜率dp做法 ...
- Print Article HDU - 3507 -斜率优化DP
思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...
- HDU 3507 斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507 斜率优化 DP Print Article
在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...
- hdu 3507 斜率优化
我的第一道斜率优化. 就这道题而言,写出原始的方程: dp[i] = min{ dp[j] + (sum[i]-sum[j])2 + M | j in [0,i) } O(n^2)的复杂度肯定超时, ...
- HDU 3480 斜率dp
Division Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others)Total ...
随机推荐
- 锋利的jQuery-3--用js给多选的checkbox或者select赋值
单选的select: <select id="single"> <option>Single</option> <option>Si ...
- TCP的那些事儿(上)
TCP的那些事儿(上) 原文链接:http://coolshell.cn/articles/11564.html TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面. ...
- 修改linux文件权限命令:chmod
Linux系统中的每个文件和目录都有访问许可权限,用它来确定谁可以通过何种方式对文件和目录进行访问和操作. 文件或目录的访问权限分为只读,只写和可执行三种.以文件为例,只读权限表示只允许读其内容, ...
- 修改shell 将当前shell(默认是bash B SHELL )改为csh C SHELL
在修改当前shell时,用命令: usermod -s /bin/csh home home 为 你所想要改变的用户地址 此处home 为家目录,一般自己创建的用户都会在家目录 ...
- Linux系统日志及日志分析
Linux系统日志及日志分析 Linux系统拥有非常灵活和强大的日志功能,可以保存几乎所有的操作记录,并可以从中检索出我们需要的信息. 大部分Linux发行版默认的日志守护进程为 syslog,位 ...
- Antenna Placement(匈牙利算法 ,最少路径覆盖)
Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6991 Accepted: 3466 ...
- cocos2d-x创建精灵动画方式汇总
1.创建精灵框架缓存,并向其中添加相应的动画文件(plist),最后,通过动画集缓存生产动画 CCSpriteFrameCache *cache = CCSpriteFrameCache::share ...
- 服务器部署之 cap deploy:setup
文章是从我的个人博客上粘贴过来的, 大家也可以访问 www.iwangzheng.com $ cap deploy:setup 执行到这一步的时候会时间较长,可以直接中断 * executing &q ...
- 对比WDCP面板与AMH面板的区别与选择
转载: http://www.laozuo.org/2760.html | 老左博客 随着VPS主机的性价比提高(其实就是降价)我们很多站长会越来越多的选择使用VPS搭建网站或者运营一些项目,相比较而 ...
- Linux upstart启动方式详解
Ubuntu从6.10开始逐步用Upstart()代替原来的SysVinit进行服务进程的管理.RHEL(CentOS)也都从版本6开始转用Upstart代替以往的init.d/rcX.d的线性启动 ...