So, today we will talk about the conditional convergence and two discriminant methods, namely Dirac-Abel, which help us to decide whether a infinite integral is conditional convergence.

Definitions of absolute convergence and conditional convergence.

1. Absolute Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ and $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ are both convergent.

    By the way, the convergence of $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ can actually deduce that $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent.

2. Conditional Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent, but $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ is not convergent.

Dirac-Abel Discriminant Methods(Dealing with Conditional Convergence).

1. Dirac Discriminant Method

  if $\displaystyle\int_{a}^{x}f(u)du$ has the bound, and $\displaystyle g(x)$ is monotonic, $\displaystyle g(x)\to0$ when $\displaystyle x\to+\infty$,then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

2. Abel Discriminant Method

  if $\displaystyle\int_{a}^{+\infty}f(u)du$ is convergent, and $\displaystyle g(x)$ is monotonic and has the bound, then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

Proof:

Before we prove these two discriminant methods, we need to first prove two related theorems, namely first and second mean value theorem for integral.

First mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ does not change the sign and is integrable in the $\displaystyle [a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Since $\displaystyle f(x)\in C[a,b]$, then it must has minimum and maximum. Let's set them as $m$ and $M$, so

$\displaystyle m\leq f(x) \leq M$

    Since $\displaystyle g(x)$ does not change the sign in the $\displaystyle[a,b]$, let's assume that $\displaystyle g(x)\ge0$. So, we multiply this inequality by $\displaystyle g(x)$ and get

$\displaystyle m g(x)\leq f(x)g(x) \leq M g(x)$

    And we integral each element from $a$ to $b$, so

$\displaystyle m \int_{a}^{b}g(x)dx \leq \int_{a}^{b}f(x)g(x)dx \leq M \int_{a}^{b}g(x)dx$

    If $\displaystyle \int_{a}^{b}g(x)dx = 0$, then the theorem is obviously correct.

    If $\displaystyle \int_{a}^{b}g(x)dx \neq 0$, then since $\displaystyle g(x)\ge0$ in the $[a,b]$, we know that $\displaystyle  \int_{a}^{b}g(x)dx > 0$, so we divide each element by $\displaystyle \int_{a}^{b}g(x)dx$, and get

$\displaystyle m\leq \frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}\leq M$.

    And since $\displaystyle f(x) \in C[a,b]$, according to intermediate value theorem, we get that

$\displaystyle f(\xi)=\frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}$, in which $\xi$ is in the range of $[a,b]$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.


Second mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ is monotonic and differentiable in $[a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Set $\displaystyle F(x)=\int_{a}^{x}f(u)du\tag{$*$}$,then apply partial integeral, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(x)g(x)\Big|_{a}^{b}-\int_{a}^{b}F(x)g'(x)dx$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx$.

    Since $\displaystyle g(x)$ is monotonic, $\displaystyle g'(x)$ does not change sign in the $[a,b]$, then we apply the first mean value theorem for integral,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=F(b)g(b)-F(a)g(a)-F(\xi)\int_{a}^{b}g'(x)dx=F(b)g(b) - F(a)g(a)-F(\xi)(g(b)-g(a))$, in which $\xi$ is in the range of $[a,b]$.

    So, by a few rearrangements,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=g(b)(F(b)-F(\xi))+g(a)(F(\xi)-F(a))$, in which $\xi$ is in the range of $[a,b]$..

    Then, plug $(*)$ in(By the way, the integral variable does not matter in the difinite integral, so we can substitude $u$ with $x$),

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx = g(b)\int_{\xi}^{b}f(x)dx+g(a)\int_{a}^{\xi}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

    Finally, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.


  Okay, and there is a last thing which we need to know to prove these two discriminant convergence. It's Cauchy's Convergence Test in the form of function. I will state it here but not prove it.

$\displaystyle \lim_{x\to +\infty}f(x)$ is convergent  $\displaystyle \Leftrightarrow$  $\displaystyle \forall \epsilon > 0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|f(x_{1})-f(x_{2})\right|<\epsilon$.


Proof of Dirac Discriminant Convergence.

  Based on the assumptions, set $\displaystyle \left|F(x)\right|=\left|\int_{a}^{x}f(u)du\right| \le M\tag{$\blacktriangle$}$, in which $\displaystyle x$ is in the range of $[a,+\infty)$ and $\displaystyle M > 0$.

  And,

$\displaystyle \because g(x)$ is monotonic and goes to $0$ when $\displaystyle x \to +\infty$.

     $\displaystyle \therefore \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}\tag{$1$}$.

  According to the difinition of infinite integral, $\displaystyle \int_{a}^{+\infty}f(x)g(x)dx \Longleftrightarrow \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$.

  If we want to prove,

$\displaystyle \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent.

  based on the Cauchy's Convergence Test, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X>0,\forall x_{1}>X,x_{2}>X,\left|\int_{a}^{x_{2}}f(x)g(x)dx-\int_{a}^{x_{1}}f(x)g(x)dx\right| =\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|< \epsilon$.

  So, for all $\epsilon > 0$,

  In the $(1)$, we set $\displaystyle \bar{\epsilon}=\frac{\epsilon}{4M}$, and get $\displaystyle \exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}=\frac{\epsilon}{4M}\tag{$2$}$ (In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$)

  for all $\displaystyle x_{1}>\bar{X}$ and $\displaystyle x_{2}>\bar{X}$,

  Using the second mean value theorem for integral,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| = \left|g(x_{1})\int_{x_{1}}^{\xi}f(x)dx+g(x_{2})\int_{\xi}^{x2}f(x)dx\right|\tag{$3$}$.

  Using absolute value inequality,

$\displaystyle (3) \le \left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$4$}$

  And that is,

$\displaystyle (4)=\left|g(x_{1})\right|\left|\int_{a}^{\xi}f(x)dx-\int_{a}^{x_{1}}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{a}^{x_{2}}f(x)dx-\int_{a}^{\xi}f(x)dx\right|$.

  Using absolute value inequality again, and according to $(\blacktriangle)$ and $(2)$,

$\displaystyle (4) \le 2M(\left|g(x_{1})\right| + \left|g(x_{2})\right|) < 2M*2\bar{\epsilon}=\epsilon$.

  Thus, by summing up, $\displaystyle \forall \epsilon >0,\exists X=\bar{X},\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| < \epsilon$, the theorem is proved.


Proof of Abel Discriminant Convergence.

The proof of Abel Discriminant Convergence is almost the same to the proof of Dirac Discriminant Convergence, so I will omit some trivial processes.

  Based on the assumptions, let's set $\displaystyle \left|g(x)\right|\le M\tag{$\blacktriangle$}$, for $x$ in the range of $[a,+\infty)$, and in which $M > 0$.

$\displaystyle \because \int_{a}^{+\infty}f(x)dx$ is convergent

$\displaystyle \therefore \lim_{b \to +\infty}\int_{a}^{b}f(x)dx$ exists.

  According to the Cauchy's Convergence Test,

$\displaystyle \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{a}^{x_{1}}f(x)dx-\int_{a}^{x_{2}}f(x)dx\right|=\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}\tag{$1$}$

  If we want to prove that $\displaystyle \lim_{b \to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$.

  So, for all $\displaystyle \epsilon > 0$,

  In $(1)$. let's set $\displaystyle \bar{\epsilon} = \frac{\epsilon}{2M}$, then $\displaystyle \exists \bar{X}(\bar{\epsilon}), \forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}=\frac{\epsilon}{2M}\tag{$2$}$(In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$).

  For $\displaystyle \forall x_{1}>\bar{X},\forall x_{2}>\bar{X}$, using the second mean value theorem for integral and absolute value inequality,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|\le\left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$3$}$, in which $\xi$ is in the range of $[x_{1},x_{2}]$.

  Combined with the $(\blacktriangle)$ and $(2)$,

$\displaystyle (3)\le 2M\bar{\epsilon}=\epsilon$

  Thus, by summing up, $\displaystyle \forall \epsilon > 0,\exists X = \bar{X},\forall x_{1} > X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$, the theorem is proved.

[Mathematics][BJTU][Calculus]Detailed explanations and proofs of the Dirac-Abel Discriminant Methods which deal with the conditional convergence的更多相关文章

  1. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  2. 10-free-must-read-books-machine-learning-data-science

    Spring. Rejuvenation. Rebirth. Everything’s blooming. And, of course, people want free ebooks. With ...

  3. 2015,2016 Open Source Yearbook

    https://opensource.com/yearbook/2015 The 2015 Open Source Yearbook is a community-contributed collec ...

  4. MIT课程

    8.02  Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...

  5. [ZZ] Understanding 3D rendering step by step with 3DMark11 - BeHardware >> Graphics cards

    http://www.behardware.com/art/lire/845/ --> Understanding 3D rendering step by step with 3DMark11 ...

  6. 【转】简单的 Laravel 5 REST API

    Introduction Almost all successful internet based companies have APIs. API is an acronym for Applica ...

  7. books

    <<learning opencv>>,   布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者),   这本书一定要第二版的,因为第二版 ...

  8. Command Line-Version (SetACL.exe) – Syntax and Description

    For a quick start, tell SetACL the following: Object name (-on): This is the path to the object SetA ...

  9. arm-none-eabi-gcc install

    Zephyr除了官方的编译工具,还有第三方工具 arm-none-eabi-gcc . This PPA is an alternative to toolchain released at http ...

随机推荐

  1. p1594(巨坑题!!!)

    护卫车队在一条单行的街道前排成一队,前面河上是一座单行的桥.因为街道是一条单行道,所以任何车辆都不能超车.桥能承受一个给定的最大承载量.为了控制桥上的交通,桥两边各站一个指挥员.护卫车队被分成几个组, ...

  2. 8.1 NOIP模拟11

    8.1 NOIP模拟 11 今天上午返校之后,颓了一会,然后下午就开始考试,中午睡着了,然后刚开始考试的时候就困的一匹,我一看T1,woc,这不是之前线段树专题的题啊,和那道题差不多,所以我..... ...

  3. .NET进阶篇06-async异步、thread多线程2

    知识需要不断积累.总结和沉淀,思考和写作是成长的催化剂 内容目录 一.线程Thread1.生命周期2.后台线程3.静态方法1.线程本地存储2.内存栅栏4.返回值二.线程池ThreadPool1.工作队 ...

  4. LocalDate类

    LocalDate类与Date类不同.Date类是距离一个固定时间点的毫秒数(UTC 1970.1.1 00:00:00) Date类表示时间点,LocalDate类用来表示日历表示法. import ...

  5. systemd单元文件

    前面我们提到过systemd启动可以对相相互依赖的串行的服务,也是可以并行启动的.在systemd中使用单元替换init的脚本来进行系统初始化.这节将要介绍系统初始化中,作为systemd的最小单元, ...

  6. TestNG+Maven+IDEA 环境配置+入门

    一.环境配置 1.安装IDEA(参考:https://blog.csdn.net/m0_38075425/article/details/80883078) 2.在Prefernces,通过Plugi ...

  7. Project Euler 63: Powerful digit counts

    五位数\(16807=7^5\)也是一个五次幂,同样的,九位数\(134217728=8^9\)也是一个九次幂.求有多少个\(n\)位正整数同时也是\(n\)次幂? 分析:设题目要求的幂的底为\(n\ ...

  8. Res2net:多尺度骨干网络结构

    <Res2Net: A New Multi-scale Backbone Architecture> 来自:南开大学程明明组 论文:https://arxiv.org/abs/1904.0 ...

  9. JavaScript笔记十

    1.正则表达式 - 语法: - 量词 {n} 正好n次 {m,n} m-n次 {m,} 至少m次 + 至少1次 {1,} ? 0次或1次 {0,1} * 0次或多次 {0,} - 转义字符 \ 在正则 ...

  10. URL基本语法

    1.URL全称为Uniform Resource Locator,即统一资源定位符.对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址.互联网上的每个文件都有一个唯一 ...