So, today we will talk about the conditional convergence and two discriminant methods, namely Dirac-Abel, which help us to decide whether a infinite integral is conditional convergence.

Definitions of absolute convergence and conditional convergence.

1. Absolute Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ and $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ are both convergent.

    By the way, the convergence of $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ can actually deduce that $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent.

2. Conditional Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent, but $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ is not convergent.

Dirac-Abel Discriminant Methods(Dealing with Conditional Convergence).

1. Dirac Discriminant Method

  if $\displaystyle\int_{a}^{x}f(u)du$ has the bound, and $\displaystyle g(x)$ is monotonic, $\displaystyle g(x)\to0$ when $\displaystyle x\to+\infty$,then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

2. Abel Discriminant Method

  if $\displaystyle\int_{a}^{+\infty}f(u)du$ is convergent, and $\displaystyle g(x)$ is monotonic and has the bound, then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

Proof:

Before we prove these two discriminant methods, we need to first prove two related theorems, namely first and second mean value theorem for integral.

First mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ does not change the sign and is integrable in the $\displaystyle [a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Since $\displaystyle f(x)\in C[a,b]$, then it must has minimum and maximum. Let's set them as $m$ and $M$, so

$\displaystyle m\leq f(x) \leq M$

    Since $\displaystyle g(x)$ does not change the sign in the $\displaystyle[a,b]$, let's assume that $\displaystyle g(x)\ge0$. So, we multiply this inequality by $\displaystyle g(x)$ and get

$\displaystyle m g(x)\leq f(x)g(x) \leq M g(x)$

    And we integral each element from $a$ to $b$, so

$\displaystyle m \int_{a}^{b}g(x)dx \leq \int_{a}^{b}f(x)g(x)dx \leq M \int_{a}^{b}g(x)dx$

    If $\displaystyle \int_{a}^{b}g(x)dx = 0$, then the theorem is obviously correct.

    If $\displaystyle \int_{a}^{b}g(x)dx \neq 0$, then since $\displaystyle g(x)\ge0$ in the $[a,b]$, we know that $\displaystyle  \int_{a}^{b}g(x)dx > 0$, so we divide each element by $\displaystyle \int_{a}^{b}g(x)dx$, and get

$\displaystyle m\leq \frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}\leq M$.

    And since $\displaystyle f(x) \in C[a,b]$, according to intermediate value theorem, we get that

$\displaystyle f(\xi)=\frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}$, in which $\xi$ is in the range of $[a,b]$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.


Second mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ is monotonic and differentiable in $[a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Set $\displaystyle F(x)=\int_{a}^{x}f(u)du\tag{$*$}$,then apply partial integeral, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(x)g(x)\Big|_{a}^{b}-\int_{a}^{b}F(x)g'(x)dx$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx$.

    Since $\displaystyle g(x)$ is monotonic, $\displaystyle g'(x)$ does not change sign in the $[a,b]$, then we apply the first mean value theorem for integral,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=F(b)g(b)-F(a)g(a)-F(\xi)\int_{a}^{b}g'(x)dx=F(b)g(b) - F(a)g(a)-F(\xi)(g(b)-g(a))$, in which $\xi$ is in the range of $[a,b]$.

    So, by a few rearrangements,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=g(b)(F(b)-F(\xi))+g(a)(F(\xi)-F(a))$, in which $\xi$ is in the range of $[a,b]$..

    Then, plug $(*)$ in(By the way, the integral variable does not matter in the difinite integral, so we can substitude $u$ with $x$),

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx = g(b)\int_{\xi}^{b}f(x)dx+g(a)\int_{a}^{\xi}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

    Finally, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.


  Okay, and there is a last thing which we need to know to prove these two discriminant convergence. It's Cauchy's Convergence Test in the form of function. I will state it here but not prove it.

$\displaystyle \lim_{x\to +\infty}f(x)$ is convergent  $\displaystyle \Leftrightarrow$  $\displaystyle \forall \epsilon > 0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|f(x_{1})-f(x_{2})\right|<\epsilon$.


Proof of Dirac Discriminant Convergence.

  Based on the assumptions, set $\displaystyle \left|F(x)\right|=\left|\int_{a}^{x}f(u)du\right| \le M\tag{$\blacktriangle$}$, in which $\displaystyle x$ is in the range of $[a,+\infty)$ and $\displaystyle M > 0$.

  And,

$\displaystyle \because g(x)$ is monotonic and goes to $0$ when $\displaystyle x \to +\infty$.

     $\displaystyle \therefore \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}\tag{$1$}$.

  According to the difinition of infinite integral, $\displaystyle \int_{a}^{+\infty}f(x)g(x)dx \Longleftrightarrow \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$.

  If we want to prove,

$\displaystyle \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent.

  based on the Cauchy's Convergence Test, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X>0,\forall x_{1}>X,x_{2}>X,\left|\int_{a}^{x_{2}}f(x)g(x)dx-\int_{a}^{x_{1}}f(x)g(x)dx\right| =\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|< \epsilon$.

  So, for all $\epsilon > 0$,

  In the $(1)$, we set $\displaystyle \bar{\epsilon}=\frac{\epsilon}{4M}$, and get $\displaystyle \exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}=\frac{\epsilon}{4M}\tag{$2$}$ (In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$)

  for all $\displaystyle x_{1}>\bar{X}$ and $\displaystyle x_{2}>\bar{X}$,

  Using the second mean value theorem for integral,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| = \left|g(x_{1})\int_{x_{1}}^{\xi}f(x)dx+g(x_{2})\int_{\xi}^{x2}f(x)dx\right|\tag{$3$}$.

  Using absolute value inequality,

$\displaystyle (3) \le \left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$4$}$

  And that is,

$\displaystyle (4)=\left|g(x_{1})\right|\left|\int_{a}^{\xi}f(x)dx-\int_{a}^{x_{1}}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{a}^{x_{2}}f(x)dx-\int_{a}^{\xi}f(x)dx\right|$.

  Using absolute value inequality again, and according to $(\blacktriangle)$ and $(2)$,

$\displaystyle (4) \le 2M(\left|g(x_{1})\right| + \left|g(x_{2})\right|) < 2M*2\bar{\epsilon}=\epsilon$.

  Thus, by summing up, $\displaystyle \forall \epsilon >0,\exists X=\bar{X},\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| < \epsilon$, the theorem is proved.


Proof of Abel Discriminant Convergence.

The proof of Abel Discriminant Convergence is almost the same to the proof of Dirac Discriminant Convergence, so I will omit some trivial processes.

  Based on the assumptions, let's set $\displaystyle \left|g(x)\right|\le M\tag{$\blacktriangle$}$, for $x$ in the range of $[a,+\infty)$, and in which $M > 0$.

$\displaystyle \because \int_{a}^{+\infty}f(x)dx$ is convergent

$\displaystyle \therefore \lim_{b \to +\infty}\int_{a}^{b}f(x)dx$ exists.

  According to the Cauchy's Convergence Test,

$\displaystyle \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{a}^{x_{1}}f(x)dx-\int_{a}^{x_{2}}f(x)dx\right|=\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}\tag{$1$}$

  If we want to prove that $\displaystyle \lim_{b \to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$.

  So, for all $\displaystyle \epsilon > 0$,

  In $(1)$. let's set $\displaystyle \bar{\epsilon} = \frac{\epsilon}{2M}$, then $\displaystyle \exists \bar{X}(\bar{\epsilon}), \forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}=\frac{\epsilon}{2M}\tag{$2$}$(In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$).

  For $\displaystyle \forall x_{1}>\bar{X},\forall x_{2}>\bar{X}$, using the second mean value theorem for integral and absolute value inequality,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|\le\left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$3$}$, in which $\xi$ is in the range of $[x_{1},x_{2}]$.

  Combined with the $(\blacktriangle)$ and $(2)$,

$\displaystyle (3)\le 2M\bar{\epsilon}=\epsilon$

  Thus, by summing up, $\displaystyle \forall \epsilon > 0,\exists X = \bar{X},\forall x_{1} > X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$, the theorem is proved.

[Mathematics][BJTU][Calculus]Detailed explanations and proofs of the Dirac-Abel Discriminant Methods which deal with the conditional convergence的更多相关文章

  1. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  2. 10-free-must-read-books-machine-learning-data-science

    Spring. Rejuvenation. Rebirth. Everything’s blooming. And, of course, people want free ebooks. With ...

  3. 2015,2016 Open Source Yearbook

    https://opensource.com/yearbook/2015 The 2015 Open Source Yearbook is a community-contributed collec ...

  4. MIT课程

    8.02  Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...

  5. [ZZ] Understanding 3D rendering step by step with 3DMark11 - BeHardware >> Graphics cards

    http://www.behardware.com/art/lire/845/ --> Understanding 3D rendering step by step with 3DMark11 ...

  6. 【转】简单的 Laravel 5 REST API

    Introduction Almost all successful internet based companies have APIs. API is an acronym for Applica ...

  7. books

    <<learning opencv>>,   布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者),   这本书一定要第二版的,因为第二版 ...

  8. Command Line-Version (SetACL.exe) – Syntax and Description

    For a quick start, tell SetACL the following: Object name (-on): This is the path to the object SetA ...

  9. arm-none-eabi-gcc install

    Zephyr除了官方的编译工具,还有第三方工具 arm-none-eabi-gcc . This PPA is an alternative to toolchain released at http ...

随机推荐

  1. OI 经典诗歌

    键盘行 学校机房夜送客,枫叶蒟蒻秋瑟瑟.主人下马客在船,代码欲写无键盘.夜不AC惨将别,别时茫茫屏幕亮. 忽闻楼上键盘声,主人忘归客不发.寻声暗问敲者谁,键盘声停欲语迟.上楼相近邀相见,添酒回灯重开宴 ...

  2. Python实现发送邮件代码

    代码如下: # -*- coding: utf-8 -*- #!/usr/bin/env python # @Time : 2017/12/22 17:50 # @Desc : # @File : m ...

  3. python中列表的常见操作

    list1 = ['a','b','ca','d','e','a'] list2 = [1,5,7,9,5,4,3] info = {'name':'wang','age':32,'num':1258 ...

  4. CentOS7 reset脚本,用于初始化新的虚拟机

    能用,有待完善 CentOS7测试 哈哈 #!/bin/bash #************************************************************** #Au ...

  5. GitHub和Git

    GitHub托管项目代码 首先一些基本概念: repository(仓库) 用来存放项目代码,每个项目代表一个仓库,开一个项目就意味着你有一个仓库. star(收藏) 收藏方便下次查找. fork(复 ...

  6. Secure CRT注册码

    secure CRT 把记忆的东西放在这就行了,:)   SecureCRT 5.2.2的注册码 Name:          Apollo InteractiveCompany:    Apollo ...

  7. VS Code 中使用 GitHub pull request 插件提交代码

    VS Code作为一个代码编辑器,受到很多人的喜爱:其中有很多非常有用的插件/扩展功能,也会极大的提高我们的工作效率. 这里介绍一下GitHub pull request,用来向GitHub提交在VS ...

  8. python三种格式化输出

    name = '张三'age = 22job = Engineersalary = 99999999 info1 = ''' ---------- info1 of %s ---------- nam ...

  9. convert svn repo to git

    https://john.albin.net/git/convert-subversion-to-git 1. 抓取Log 在linux 上做的,其余是在win上做的. 2. svn co svn:/ ...

  10. Redis为什么是单线程、及高并发快的3大原因详解

    Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间: 3.redis使用多路复用技术,可以处理并发的连接.非阻塞 ...