So, today we will talk about the conditional convergence and two discriminant methods, namely Dirac-Abel, which help us to decide whether a infinite integral is conditional convergence.

Definitions of absolute convergence and conditional convergence.

1. Absolute Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ and $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ are both convergent.

    By the way, the convergence of $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ can actually deduce that $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent.

2. Conditional Convergence

  $\displaystyle\int_{a}^{+\infty}f(x)dx$ is convergent, but $\displaystyle\int_{a}^{+\infty}\left| f(x)\right|dx$ is not convergent.

Dirac-Abel Discriminant Methods(Dealing with Conditional Convergence).

1. Dirac Discriminant Method

  if $\displaystyle\int_{a}^{x}f(u)du$ has the bound, and $\displaystyle g(x)$ is monotonic, $\displaystyle g(x)\to0$ when $\displaystyle x\to+\infty$,then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

2. Abel Discriminant Method

  if $\displaystyle\int_{a}^{+\infty}f(u)du$ is convergent, and $\displaystyle g(x)$ is monotonic and has the bound, then

$\displaystyle\int_{a}^{+\infty}f(x)g(x)dx$ is convergent.

Proof:

Before we prove these two discriminant methods, we need to first prove two related theorems, namely first and second mean value theorem for integral.

First mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ does not change the sign and is integrable in the $\displaystyle [a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Since $\displaystyle f(x)\in C[a,b]$, then it must has minimum and maximum. Let's set them as $m$ and $M$, so

$\displaystyle m\leq f(x) \leq M$

    Since $\displaystyle g(x)$ does not change the sign in the $\displaystyle[a,b]$, let's assume that $\displaystyle g(x)\ge0$. So, we multiply this inequality by $\displaystyle g(x)$ and get

$\displaystyle m g(x)\leq f(x)g(x) \leq M g(x)$

    And we integral each element from $a$ to $b$, so

$\displaystyle m \int_{a}^{b}g(x)dx \leq \int_{a}^{b}f(x)g(x)dx \leq M \int_{a}^{b}g(x)dx$

    If $\displaystyle \int_{a}^{b}g(x)dx = 0$, then the theorem is obviously correct.

    If $\displaystyle \int_{a}^{b}g(x)dx \neq 0$, then since $\displaystyle g(x)\ge0$ in the $[a,b]$, we know that $\displaystyle  \int_{a}^{b}g(x)dx > 0$, so we divide each element by $\displaystyle \int_{a}^{b}g(x)dx$, and get

$\displaystyle m\leq \frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}\leq M$.

    And since $\displaystyle f(x) \in C[a,b]$, according to intermediate value theorem, we get that

$\displaystyle f(\xi)=\frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}$, in which $\xi$ is in the range of $[a,b]$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$, in which $\xi$ is in the range of $[a,b]$.


Second mean value theorem for integral.

  if $\displaystyle f(x)\in C[a,b]$, and $\displaystyle g(x)$ is monotonic and differentiable in $[a,b]$, then

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

  Proof:

    Set $\displaystyle F(x)=\int_{a}^{x}f(u)du\tag{$*$}$,then apply partial integeral, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(x)g(x)\Big|_{a}^{b}-\int_{a}^{b}F(x)g'(x)dx$.

    Namely,

$\displaystyle \int_{a}^{b}f(x)g(x)dx=F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx$.

    Since $\displaystyle g(x)$ is monotonic, $\displaystyle g'(x)$ does not change sign in the $[a,b]$, then we apply the first mean value theorem for integral,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=F(b)g(b)-F(a)g(a)-F(\xi)\int_{a}^{b}g'(x)dx=F(b)g(b) - F(a)g(a)-F(\xi)(g(b)-g(a))$, in which $\xi$ is in the range of $[a,b]$.

    So, by a few rearrangements,

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx=g(b)(F(b)-F(\xi))+g(a)(F(\xi)-F(a))$, in which $\xi$ is in the range of $[a,b]$..

    Then, plug $(*)$ in(By the way, the integral variable does not matter in the difinite integral, so we can substitude $u$ with $x$),

$\displaystyle F(b)g(b)-F(a)g(a)-\int_{a}^{b}F(x)g'(x)dx = g(b)\int_{\xi}^{b}f(x)dx+g(a)\int_{a}^{\xi}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.

    Finally, we get

$\displaystyle \int_{a}^{b}f(x)g(x)dx = g(a)\int_{a}^{\xi}f(x)dx+g(b)\int_{\xi}^{b}f(x)dx$, in which $\xi$ is in the range of $[a,b]$.


  Okay, and there is a last thing which we need to know to prove these two discriminant convergence. It's Cauchy's Convergence Test in the form of function. I will state it here but not prove it.

$\displaystyle \lim_{x\to +\infty}f(x)$ is convergent  $\displaystyle \Leftrightarrow$  $\displaystyle \forall \epsilon > 0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|f(x_{1})-f(x_{2})\right|<\epsilon$.


Proof of Dirac Discriminant Convergence.

  Based on the assumptions, set $\displaystyle \left|F(x)\right|=\left|\int_{a}^{x}f(u)du\right| \le M\tag{$\blacktriangle$}$, in which $\displaystyle x$ is in the range of $[a,+\infty)$ and $\displaystyle M > 0$.

  And,

$\displaystyle \because g(x)$ is monotonic and goes to $0$ when $\displaystyle x \to +\infty$.

     $\displaystyle \therefore \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}\tag{$1$}$.

  According to the difinition of infinite integral, $\displaystyle \int_{a}^{+\infty}f(x)g(x)dx \Longleftrightarrow \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$.

  If we want to prove,

$\displaystyle \lim_{b\to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent.

  based on the Cauchy's Convergence Test, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X>0,\forall x_{1}>X,x_{2}>X,\left|\int_{a}^{x_{2}}f(x)g(x)dx-\int_{a}^{x_{1}}f(x)g(x)dx\right| =\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|< \epsilon$.

  So, for all $\epsilon > 0$,

  In the $(1)$, we set $\displaystyle \bar{\epsilon}=\frac{\epsilon}{4M}$, and get $\displaystyle \exists \bar{X}(\bar{\epsilon})>0,\forall x > \bar{X}, \left|g(x)\right|<\bar{\epsilon}=\frac{\epsilon}{4M}\tag{$2$}$ (In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$)

  for all $\displaystyle x_{1}>\bar{X}$ and $\displaystyle x_{2}>\bar{X}$,

  Using the second mean value theorem for integral,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| = \left|g(x_{1})\int_{x_{1}}^{\xi}f(x)dx+g(x_{2})\int_{\xi}^{x2}f(x)dx\right|\tag{$3$}$.

  Using absolute value inequality,

$\displaystyle (3) \le \left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$4$}$

  And that is,

$\displaystyle (4)=\left|g(x_{1})\right|\left|\int_{a}^{\xi}f(x)dx-\int_{a}^{x_{1}}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{a}^{x_{2}}f(x)dx-\int_{a}^{\xi}f(x)dx\right|$.

  Using absolute value inequality again, and according to $(\blacktriangle)$ and $(2)$,

$\displaystyle (4) \le 2M(\left|g(x_{1})\right| + \left|g(x_{2})\right|) < 2M*2\bar{\epsilon}=\epsilon$.

  Thus, by summing up, $\displaystyle \forall \epsilon >0,\exists X=\bar{X},\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right| < \epsilon$, the theorem is proved.


Proof of Abel Discriminant Convergence.

The proof of Abel Discriminant Convergence is almost the same to the proof of Dirac Discriminant Convergence, so I will omit some trivial processes.

  Based on the assumptions, let's set $\displaystyle \left|g(x)\right|\le M\tag{$\blacktriangle$}$, for $x$ in the range of $[a,+\infty)$, and in which $M > 0$.

$\displaystyle \because \int_{a}^{+\infty}f(x)dx$ is convergent

$\displaystyle \therefore \lim_{b \to +\infty}\int_{a}^{b}f(x)dx$ exists.

  According to the Cauchy's Convergence Test,

$\displaystyle \forall \bar{\epsilon}>0,\exists \bar{X}(\bar{\epsilon})>0,\forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{a}^{x_{1}}f(x)dx-\int_{a}^{x_{2}}f(x)dx\right|=\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}\tag{$1$}$

  If we want to prove that $\displaystyle \lim_{b \to +\infty}\int_{a}^{b}f(x)g(x)dx$ is convergent, we just need to prove that

$\displaystyle \forall \epsilon >0,\exists X > 0,\forall x_{1}>X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$.

  So, for all $\displaystyle \epsilon > 0$,

  In $(1)$. let's set $\displaystyle \bar{\epsilon} = \frac{\epsilon}{2M}$, then $\displaystyle \exists \bar{X}(\bar{\epsilon}), \forall x_{1}>\bar{X},\forall x_{2}>\bar{X},\left|\int_{x_{1}}^{x_{2}}f(x)dx\right|<\bar{\epsilon}=\frac{\epsilon}{2M}\tag{$2$}$(In the following text, $\bar{X}$ is refered to $\bar{X}(\bar{\epsilon})$).

  For $\displaystyle \forall x_{1}>\bar{X},\forall x_{2}>\bar{X}$, using the second mean value theorem for integral and absolute value inequality,

$\displaystyle \left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|\le\left|g(x_{1})\right|\left|\int_{x_{1}}^{\xi}f(x)dx\right|+\left|g(x_{2})\right|\left|\int_{\xi}^{x_{2}}f(x)dx\right|\tag{$3$}$, in which $\xi$ is in the range of $[x_{1},x_{2}]$.

  Combined with the $(\blacktriangle)$ and $(2)$,

$\displaystyle (3)\le 2M\bar{\epsilon}=\epsilon$

  Thus, by summing up, $\displaystyle \forall \epsilon > 0,\exists X = \bar{X},\forall x_{1} > X,\forall x_{2}>X,\left|\int_{x_{1}}^{x_{2}}f(x)g(x)dx\right|<\epsilon$, the theorem is proved.

[Mathematics][BJTU][Calculus]Detailed explanations and proofs of the Dirac-Abel Discriminant Methods which deal with the conditional convergence的更多相关文章

  1. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  2. 10-free-must-read-books-machine-learning-data-science

    Spring. Rejuvenation. Rebirth. Everything’s blooming. And, of course, people want free ebooks. With ...

  3. 2015,2016 Open Source Yearbook

    https://opensource.com/yearbook/2015 The 2015 Open Source Yearbook is a community-contributed collec ...

  4. MIT课程

    8.02  Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...

  5. [ZZ] Understanding 3D rendering step by step with 3DMark11 - BeHardware >> Graphics cards

    http://www.behardware.com/art/lire/845/ --> Understanding 3D rendering step by step with 3DMark11 ...

  6. 【转】简单的 Laravel 5 REST API

    Introduction Almost all successful internet based companies have APIs. API is an acronym for Applica ...

  7. books

    <<learning opencv>>,   布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者),   这本书一定要第二版的,因为第二版 ...

  8. Command Line-Version (SetACL.exe) – Syntax and Description

    For a quick start, tell SetACL the following: Object name (-on): This is the path to the object SetA ...

  9. arm-none-eabi-gcc install

    Zephyr除了官方的编译工具,还有第三方工具 arm-none-eabi-gcc . This PPA is an alternative to toolchain released at http ...

随机推荐

  1. 数据结构--树链剖分准备之LCA

    有关LCA的模板题    传送门 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和 ...

  2. Cpython和Jython的对比介绍

    CPython 当我们从Python官方网站下载并安装好Python 3.x后,我们就直接获得了一个官方版本的解释器:CPython.这个解释器是用C语言开发的,所以叫CPython.在命令行下运行p ...

  3. 实现 sqrt(x):二分查找法和牛顿法

    最近忙里偷闲,每天刷一道 LeetCode 的简单题保持手感,发现简单题虽然很容易 AC,但若去了解其所有的解法,也可学习到不少新的知识点,扩展知识的广度. 创作本文的思路来源于:LeetCode P ...

  4. 大宇java面试系列(一):jvm垃圾回收

    1. 说一下 JVM 有哪些垃圾回收算法? 标记-清除算法:标记无用对象,然后进行清除回收.缺点:效率不高,无法清除垃圾碎片. 标记-整理算法:标记无用对象,让所有存活的对象都向一端移动,然后直接清除 ...

  5. Asciinema:你的所有操作都将被录制

    如何实现类似于Jumpserver koko一样的终端录制回放功能呢?本文介绍一个神器 asciinema 是一款开源免费的终端录制工具,它可以将命令行输入输出的任何内容加上时间保存在文件中,同时还提 ...

  6. Linux之ant安装部署

    接下来呢,就开始ant的部署,具体分为如下几个步骤: 1. 获取介质: 在apache的官网中直接下载,下载地址为:http://ant.apache.org/ 下载需要的版本即可: 2. 复制到us ...

  7. 微信小程序 js 计时器

    function timing(that) {  var seconds = that.data.seconds  if (seconds > 21599) {    that.setData( ...

  8. Mongodb自动备份数据库并删除指定天数前的备份

    1.创建Mongodb数据库备份目录 mkdir -p /home/backup/mongod_bak/mongod_bak_now mkdir -p /home/backup/mongod_bak/ ...

  9. mysql基础之约束

    约束的目的: 1.约束保证数据的完整性和一致性. 2.约束分为表级约束 和 列级 约束.(针对约束字段的数目的多少来确定的) 3.约束类型包括 not null (非空约束) primary key( ...

  10. Android状态栏兼容4.4.4与5.0,Android5.0状态栏由半透明设置为全透明

    //判断android 版本然后设置Systembar颜色 public void initSystemBar() { Window window = getWindow(); //4.4版本及以上 ...