A. Amazing Adventures


B. Bipartite Battle

solved by rdc 135min

  • sdcgvhgj 打表找出了规律,发现 sg 值只和点数和边数的奇偶性有关。
  • 数学归纳之。

C. Conquest Campaign

solved by rdc 16min

  • 超级源点,BFS。

D. Divide Doughnut

solved by rdc 199min -3

  • 注意到长度为 5e8 的窗口,滑动一步,1 的个数变化的绝对值,不超过 1。
  • 介值定理。

心路历程

  • 这个次数限制是什么东西?它为什么是 log 根号啊。
  • 这个每一部分都不超过 1 有什么用啊?想不通啊。
  • 窗口一滑。窗口内 1 的个数变化不超过 1.
  • 定义 \(f(x)\) 表示从 \(x\) 开始长度为 5e8 的区间内 1 的个数,问题等价于找零点。

F. Fun with Fibonacci

upsolved by sdcgvhgj
题意

  • 定义\(G(i,n)=F(G(i-1,n)),G(1,n)=F(n)\),\(F\)为斐波那契数列,求\(G(k,n)\%p\)
  • \(10^5\)组数据,\(1≤n,k≤10^{18},1≤p≤10^6,p\)为任意正整数

做法

  • 斐波那契数列循环节是经典问题,可以\(O(log^2n)\)求得,设斐波那契数列模\(p\)的循环节为\(f(p)\)
  • 设\(G(k,n,p)=G(k,n)\%p\),于是有:\(G(k,n,p)=F(G(k-1,n,f(p))\%p\),于是有了\(O(k*log^2n)\)的做法
  • 发现有这样一个性质,不管初始\(p\)为何值,在递归不超过20层之后一定会达到一个不动点,即\(f(x)=x\)的点,于是之后的递归\(p\)是不变的
  • 于是问题就变成了每次把\(n\)变为\(F(n)\%p\),求\(k\)次之后的值。考虑从\(i\)向\(F(i)\)连边,于是就变成在\(p\)个点的基环森林(水母森林)上找环的问题,复杂度\(O(p)\)
  • 打表发现不动点一共有9个,且最大为\(9375000\),并且每个点最多跳4次就会进基环里,于是我们只需要线性预处理每个基环森林的每个点会进到哪个环的哪个点就好了
  • 设\(N=9375000\),求所有\(f(p)\)的复杂度可以通过记忆化达到\(O(NlogN)\)(\(O(log^2N)\)的复杂度求\(O(N/logN)\)个素数的值加\(O(logN)\)的复杂度求其他数的值)
  • 这样每次查询的复杂度就是\(O(20logN)\)了
  • code

H. Hydra's Heads

solved by sdcgvhgj 17min start 22min AC
签到


I. Insider's Identity

solved by sdcgvhg 99min
AC自动机经典问题


J. Jurassic Jungle

solved by rdc 185min -1

做法

  • 完全不会证。先注意到环合法,再注意到团合法,再注意到左右集点数等的完全二分图合法。
  • 接下来,想破脑袋也想不出其它合法的图了,烦死咯。
  • 不如 try a try!

K. Kingdom of Kittens

23min start, 1737min upsolved by sdcgvhgj -17
题意 给平面n个点,问是否存在一个三角形使所有点都在其边界上
做法

  • 所有点都在凸包上,且严格凸包点数小于等于6,WA
  • 发现这样很多情况都不对,严格凸包的所有有点的边都需要被三角形包含
  • 考虑枚举严格凸包的三条边然后check?被正方形hack
  • 显然(大概)枚举两条边一定是对的,那另一条边怎么找?以及怎么check?
  • 法一:枚举一个点,过这个点做已确定两边的角平分线的垂线做第三条边,然后check,TLE,而且涉及浮点运算
  • 法二:在两侧分别分类讨论。看似很难讨论,但冷静分析一下发现还算简单,AC

L. Lazy Learner


ICPC 2018 Asia Hanoi Regional Contest的更多相关文章

  1. 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)

    摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...

  2. The 2018 ACM-ICPC Asia Qingdao Regional Contest(部分题解)

    摘要: 本文是The 2018 ACM-ICPC Asia Qingdao Regional Contest(青岛现场赛)的部分解题报告,给出了出题率较高的几道题的题解,希望熟悉区域赛的题型,进而对其 ...

  3. The 2018 ACM-ICPC Asia Qingdao Regional Contest

    The 2018 ACM-ICPC Asia Qingdao Regional Contest 青岛总体来说只会3题 C #include<bits/stdc++.h> using nam ...

  4. 2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)

    2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred) easy: ACE ...

  5. ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879

    ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879 A 签到,dfs 或者 floyd 都行. #i ...

  6. zoj 3659 Conquer a New Region The 2012 ACM-ICPC Asia Changchun Regional Contest

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

  7. 2014-2015 ACM-ICPC, Asia Xian Regional Contest(部分题解)

    摘要 本文主要给出了2014-2015 ACM-ICPC, Asia Xian Regional Contest的部分题解,说明了每题的题意.解题思路和代码实现,意即熟悉区域赛比赛题型. Built ...

  8. 2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest

    2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest A Secret of Chocolate Poles 思路:暴力枚举黑巧克力的个数和厚黑巧克力的个 ...

  9. hdu 3123 GCC (2009 Asia Wuhan Regional Contest Online)

    GCC Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Subm ...

随机推荐

  1. tomcat配置启动文件

    修改tomcat到指定文件夹 conf -> server.xml <Host name="localhost" appBase="webapps" ...

  2. IDEA 控制台输出日志无法grep

    不知从何时开始,我的IDEA控制台无法直接使用Grep插件来过滤输出日志了,这个插件真的挺好用的,不知道是升级后造成的还是我自己设置错误,反正在控制台右键无法打开grep来过滤: 在我开发过程中需要这 ...

  3. PID算法 旋转倒立摆与平衡车的区别。此贴后边会更新。

    我做PID算法的背景和经历:本人之前电子信息科学与技术专业,对控制方向颇感兴趣,刚上大学时听到实验室老师说PID算法,那年在暑假集训准备全国电子设计竞赛,我正在练习做一个以前专科的题目,帆板角度控制系 ...

  4. ASP.NET Core MVC 之局部视图(Partial Views)

    1.什么是局部视图 局部视图是在其他视图中呈现的视图.通过执行局部视图生成的HTML输出呈现在调用视图中.与视图一样,局部视图使用 .cshtml 文件扩展名.当希望在不同视图之间共享网页的可重用部分 ...

  5. css实现左边高度自适应右边高度

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  6. java中的异常 try catch

    1.学习异常的原因?      如果没有异常处理机制,那么程序的一点小问题,都会导致[程序终止运行].实际开发中显然是不可能的,所以异常对于程序来说是非常重要的.     2.处理异常的方式:   A ...

  7. Linux软件的安装

    yum -y groups install "GNOME Desktop"  安装桌面系统startx  安装完成后输入指令进入到桌面化指令 安装tomcat sudo yum i ...

  8. iText实现pdf导出

    /** * AsianTest.java */ import java.io.FileOutputStream; import java.io.IOException; import com.lowa ...

  9. 章节十五、7- 配置文件-Console Logging

    一.创建xml文件 1.创建xml文件 在项目中我们需要专门建一个文件夹来放xml文件或者是其它文件. 2.然后对文件夹进行命名 3.选择new  其它 4.选择XML File 5.给xml文件命名 ...

  10. pythonday02基础与运算符

    今日概要 1.循环 2.字符串格式化 3.运算符 4.编码 if的嵌套 score = input('请输入成绩') score_int = int(score) if score_int >= ...