A. Amazing Adventures


B. Bipartite Battle

solved by rdc 135min

  • sdcgvhgj 打表找出了规律,发现 sg 值只和点数和边数的奇偶性有关。
  • 数学归纳之。

C. Conquest Campaign

solved by rdc 16min

  • 超级源点,BFS。

D. Divide Doughnut

solved by rdc 199min -3

  • 注意到长度为 5e8 的窗口,滑动一步,1 的个数变化的绝对值,不超过 1。
  • 介值定理。

心路历程

  • 这个次数限制是什么东西?它为什么是 log 根号啊。
  • 这个每一部分都不超过 1 有什么用啊?想不通啊。
  • 窗口一滑。窗口内 1 的个数变化不超过 1.
  • 定义 \(f(x)\) 表示从 \(x\) 开始长度为 5e8 的区间内 1 的个数,问题等价于找零点。

F. Fun with Fibonacci

upsolved by sdcgvhgj
题意

  • 定义\(G(i,n)=F(G(i-1,n)),G(1,n)=F(n)\),\(F\)为斐波那契数列,求\(G(k,n)\%p\)
  • \(10^5\)组数据,\(1≤n,k≤10^{18},1≤p≤10^6,p\)为任意正整数

做法

  • 斐波那契数列循环节是经典问题,可以\(O(log^2n)\)求得,设斐波那契数列模\(p\)的循环节为\(f(p)\)
  • 设\(G(k,n,p)=G(k,n)\%p\),于是有:\(G(k,n,p)=F(G(k-1,n,f(p))\%p\),于是有了\(O(k*log^2n)\)的做法
  • 发现有这样一个性质,不管初始\(p\)为何值,在递归不超过20层之后一定会达到一个不动点,即\(f(x)=x\)的点,于是之后的递归\(p\)是不变的
  • 于是问题就变成了每次把\(n\)变为\(F(n)\%p\),求\(k\)次之后的值。考虑从\(i\)向\(F(i)\)连边,于是就变成在\(p\)个点的基环森林(水母森林)上找环的问题,复杂度\(O(p)\)
  • 打表发现不动点一共有9个,且最大为\(9375000\),并且每个点最多跳4次就会进基环里,于是我们只需要线性预处理每个基环森林的每个点会进到哪个环的哪个点就好了
  • 设\(N=9375000\),求所有\(f(p)\)的复杂度可以通过记忆化达到\(O(NlogN)\)(\(O(log^2N)\)的复杂度求\(O(N/logN)\)个素数的值加\(O(logN)\)的复杂度求其他数的值)
  • 这样每次查询的复杂度就是\(O(20logN)\)了
  • code

H. Hydra's Heads

solved by sdcgvhgj 17min start 22min AC
签到


I. Insider's Identity

solved by sdcgvhg 99min
AC自动机经典问题


J. Jurassic Jungle

solved by rdc 185min -1

做法

  • 完全不会证。先注意到环合法,再注意到团合法,再注意到左右集点数等的完全二分图合法。
  • 接下来,想破脑袋也想不出其它合法的图了,烦死咯。
  • 不如 try a try!

K. Kingdom of Kittens

23min start, 1737min upsolved by sdcgvhgj -17
题意 给平面n个点,问是否存在一个三角形使所有点都在其边界上
做法

  • 所有点都在凸包上,且严格凸包点数小于等于6,WA
  • 发现这样很多情况都不对,严格凸包的所有有点的边都需要被三角形包含
  • 考虑枚举严格凸包的三条边然后check?被正方形hack
  • 显然(大概)枚举两条边一定是对的,那另一条边怎么找?以及怎么check?
  • 法一:枚举一个点,过这个点做已确定两边的角平分线的垂线做第三条边,然后check,TLE,而且涉及浮点运算
  • 法二:在两侧分别分类讨论。看似很难讨论,但冷静分析一下发现还算简单,AC

L. Lazy Learner


ICPC 2018 Asia Hanoi Regional Contest的更多相关文章

  1. 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)

    摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...

  2. The 2018 ACM-ICPC Asia Qingdao Regional Contest(部分题解)

    摘要: 本文是The 2018 ACM-ICPC Asia Qingdao Regional Contest(青岛现场赛)的部分解题报告,给出了出题率较高的几道题的题解,希望熟悉区域赛的题型,进而对其 ...

  3. The 2018 ACM-ICPC Asia Qingdao Regional Contest

    The 2018 ACM-ICPC Asia Qingdao Regional Contest 青岛总体来说只会3题 C #include<bits/stdc++.h> using nam ...

  4. 2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)

    2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred) easy: ACE ...

  5. ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879

    ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879 A 签到,dfs 或者 floyd 都行. #i ...

  6. zoj 3659 Conquer a New Region The 2012 ACM-ICPC Asia Changchun Regional Contest

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

  7. 2014-2015 ACM-ICPC, Asia Xian Regional Contest(部分题解)

    摘要 本文主要给出了2014-2015 ACM-ICPC, Asia Xian Regional Contest的部分题解,说明了每题的题意.解题思路和代码实现,意即熟悉区域赛比赛题型. Built ...

  8. 2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest

    2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest A Secret of Chocolate Poles 思路:暴力枚举黑巧克力的个数和厚黑巧克力的个 ...

  9. hdu 3123 GCC (2009 Asia Wuhan Regional Contest Online)

    GCC Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Subm ...

随机推荐

  1. python语言快捷注释

    1.注释单行 (1)方法1:直接在单行代码前边加 # (2)方法2:选中需要注释的代码,Ctrl+/ 即可注释 2.注释多行代码 选中想要注释的N行代码,直接Ctrl+/ 即可注释 3.取消注释多行代 ...

  2. 第二章、Go-基础语法

    2.1.变量定义 (1)第一个程序helloworld package main import( "fmt" ) func main() { fmt.Println("h ...

  3. 模拟器无Back、Menu等键

    问题如图所示: 解决方法: 1. 打开Android Virtual Device (AVD) Manager --> 选择模拟器,并点击edit --> 勾选KeyBoard中的选项,并 ...

  4. ASP.NET Core Web Api之JWT刷新Token(三)

    前言 如题,本节我们进入JWT最后一节内容,JWT本质上就是从身份认证服务器获取访问令牌,继而对于用户后续可访问受保护资源,但是关键问题是:访问令牌的生命周期到底设置成多久呢?见过一些使用JWT的童鞋 ...

  5. JAVA-基础-数据类型转换

    一.类型的转换 java中数据具有类型.这些类型是可以相互进行转换的. 1.自动类型转换 六个和数字相关的基本类型,可以自动由小到大进行类型转换.但是反过来就不行. *注意,在整形自动转浮点型时,有可 ...

  6. 有助于提高"锁"性能的几点建议

    有助于提高"锁"性能的几点建议 1.减少锁持有时间 public synchronized void syncMethod() { othercode1(); mutextMeth ...

  7. Java性能调优的11个实用技巧

    译文出处: ITeye    原文出处:dzone 大多数开发人员认为性能优化是个比较复杂的问题,需要大量的经验和知识.是的,这并不没有错.诚然,优化应用程序以获得最好的性能并不是一件容易的事情,但这 ...

  8. Kalman Filter、Extended Kalman Filter以及Unscented Kalman Filter介绍

    模型定义 如上图所示,卡尔曼滤波(Kalman Filter)的基本模型和隐马尔可夫模型类似,不同的是隐马尔科夫模型考虑离散的状态空间,而卡尔曼滤波的状态空间以及观测空间都是连续的,并且都属于高斯分布 ...

  9. 佳木斯集训Day8

    本来能AK的啊啊啊啊啊,唯一一天可以AK,却被Champion误导了(好吧实际上是我理解有问题) T1我写了俩小时,就是一道数列题,推公式的,可以二分解,我觉得二分麻烦,就直接想O(1)了 #incl ...

  10. Spark 系列(五)—— Spark 运行模式与作业提交

    一.作业提交 1.1 spark-submit Spark 所有模式均使用 spark-submit 命令提交作业,其格式如下: ./bin/spark-submit \ --class <ma ...