线性模型之LDA和PCA

线性判别分析LDA

LDA是一种无监督学习的降维技术。

思想:投影后类内方差最小,类间方差最大,即期望同类实例投影后的协方差尽可能小,异类实例的投影后的类中心距离尽量大。

二分类推导

给定数据集\(D=\{(x_i,y_i)\}_{i=1}^m\),令\(X_i,\mu_i,\sum_i\)分别表示第\(i\in \{0,1\}\)类实例的集合,均值,和协方差矩阵

则两类样本中心点在\(w\)方向直线的投影分别为\(w^Tu_0,w^Tu_1\);若将所有的样本点都投影到\(w\)方向直线上,则两类样本的协方差分别是\(w^T\sum_0 w,w^T\sum_1 w\)

此处推导用到的知识点
方差:

$\frac{\sum_{i=1}^m(x_i-\overline{X})(x_i-\overline{X})}{n-1}$

协方差:

$\frac{\sum_{i=1}^m(x_i-\overline{X})(y_i-\overline{Y})}{n-1}$

$\sum_0=\sum_{x\in X_0}(x-u_0)(x-u_0)^T$

根据投影后类内方差最小,类间方差最大,欲最大化的目标为:

  • \(J=\frac{||w^Tu_0-w^Tu_1||^2}{w^T\sum_0 w+w^T\sum_1 w}\)

类内散度矩阵:

  • \(S_w=\sum_{x \in Y_i}(x-u_i)(x-u_i)^T\)

类间散度矩阵:

  • \(S_b=(u_0-u_1)(u_0-u_1)^T\)

则目标重写为\(S_w,S_b\)的广义瑞利商

  • \(J=\frac{w^TS_bw}{w^TS_ww}\)
  • 解与w只与方向有关与长度无关,令,\({w^TS_ww}=1\)

目标函数等价于

  • min\(\quad -w^TS_bw\)
  • \(s.t. \quad {w^TS_ww}=1\)

引入拉格朗日乘子法

  • \(S_bw = \lambda S_ww\)

\(S_bw\)方向恒为\((u_0-u_1)\)

  • \(S_bw = \lambda (u_0-u_1)\) 带入上式得:
  • \(w = S_w^{-1}(u_0-u_1)\)

奇异值分解:

  • \(S_w=U\sum V^T\)
  • \(S_w^{-1}=V\sum^{-1} U^T\)

从贝叶斯决策理论的角度阐释:当两类满足数据同先验,满足高斯分布且协方差相等时,LDA达到最优

N分类

全局散度矩阵:

  • \(S_t=S_b+S_w=\sum^m_{i=1}(x_i-u)(x_i-u)^T\)
  • \(S_w=\sum^N_{i=1}\sum_{x \in X_i}(x-u_i)(x-u_i)^T\)
  • \(S_b=S_t-S_w=\sum^N_{i=1}m_i(u_i-u)(u_i-u)^T\)

根据LDA思想,目标函数为:

  • \(J(W)=\frac{tr(W^TS_bW)}{tr(W^TS_wW)}\)
  • \(S_bw = \lambda S_ww\)

PCA

PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征

信号领域:信号具有较大方差,噪音具有较大方差,信噪比越大意味着数据质量越高。所以PCA的目标就是最大化投影误差。

第一步:将数据进行去中心化:

第二步:方差:

  • x在单位向量上的投影为\(x^Tw\)
  • \(D(x)=\frac{1}{n}\sum_{i=1}^m(x_i^Tw)^2\)
  • = \(\frac{1}{n}\sum_{i=1}^mw^Tx_ix_i^Tw\)
  • = \(w^T(\frac{1}{n}\sum_{i=1}^mx_ix_i^T)w\)
  • = \(w^T\sum w\)

第三步:目标函数:

  • \(max \quad w^T\sum w\)
  • \(max \quad w^Tw=1\)

第四步:拉格朗日

  • \(D(x)=w^T\sum w=\lambda w^Tw=\lambda\)

投影后的方差就是投影后的协方差特征值,将特征值由大到小排列,取前d个主成分(主成分间相互正交)

由于得到协方差矩阵的特征值特征向量有两种方法:特征值分解协方差矩阵、奇异值分解协方差矩阵,所以PCA算法有两种实现方法:基于特征值分解协方差矩阵实现PCA算法、基于SVD分解协方差矩阵实现PCA算法

降维后的信息占比:

  • \(\eta=\sqrt{\frac{\sum_{i=1}^d\lambda_i^2}{\sum_{i=1}^n \lambda_i^2}}\)

PCA和LDA的相同点

PCA和LDA都是经典的降维算法;

PCA和LDA都假设数据是符合高斯分布的;

PCA和LDA都利用了矩阵特征分解的思想。

PCA和LDA的不同点

PCA是无监督(训练样本无标签)的,LDA是有监督(训练样本有标签)的;

PCA去除原始数据集中冗余的维度,让投影子空间的各个维度的方差尽可能大,也就是熵尽可能大。LDA是通过数据降维找到那些具有判断力的维度,使得原始数据在这些维度上的投影,不同类别尽可能区分开来。

LDA最多可以降到k-1维(k是训练样本的类别数量,k-1是因为最后一维的均值可以由前面的k-1维的均值表示);而PCA没有这个限制

LDA还可以用于分类。

LDA可能会过拟合数据。

线性模型之LDA和PCA推导的更多相关文章

  1. LDA和PCA降维的原理和区别

     LDA算法的主要优点有: 在降维过程中可以使用类别的先验知识经验,而像PCA这样的无监督学习则无法使用类别先验知识. LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优. LDA算 ...

  2. 无监督LDA、PCA、k-means三种方法之间的的联系及推导

       \(LDA\)是一种比较常见的有监督分类方法,常用于降维和分类任务中:而\(PCA\)是一种无监督降维技术:\(k\)-means则是一种在聚类任务中应用非常广泛的数据预处理方法.    本文的 ...

  3. LDA和PCA

    LDA: LDA的全称是Linear Discriminant Analysis(线性判别分析),是一种supervised learning.有些资料上也称为是Fisher's Linear Dis ...

  4. 机器学习(十六)— LDA和PCA降维

    一.LDA算法 基本思想:LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. 我们要将数据在低维度上进行投影,投 ...

  5. 【主成份分析】PCA推导

    ### 主成份分析(Pricipal components analysis PCA) 假设空间$R^{n}$中有m个点{$x^{1},......,x^{n}$},希望压缩,对每个$x^{i}$都有 ...

  6. 数据分析--降维--LDA和PCA

    一.因子分析 因子分析是将具有错综复杂关系的变量(或样本)综合为少数几个因子,以再现原始变量和因子之间的相互关系,探讨多个能够直接测量,并且具有一定相关性的实测指标是如何受少数几个内在的独立因子所支配 ...

  7. 【降维】主成分分析PCA推导

    本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最 ...

  8. LDA和PCA区别

    https://blog.csdn.net/brucewong0516/article/details/78684005

  9. LDA与PCA

    参考: https://www.cnblogs.com/pinard/p/6244265.html https://blog.csdn.net/qq_25680531/article/details/ ...

随机推荐

  1. 关于 Facebook 的 React 专利许可证

    本文转载自:酷 壳 – CoolShell 作者:陈皓 随着 Apache.百度.Wordpress 都在和 Facebook 的 React.js 以及其专利许可证划清界限,似乎大家又在讨论 Fac ...

  2. 正态分布(normal distribution)与偏态分布(skewed distribution)

    存在正太分布的概念,自然也少不了偏态分布. 正态分布(normal distribution) 偏态分布(skewed distribution) 左偏态:left skewed distributi ...

  3. react项目实践——(2)webpack-dev-serve

    webpack-dev-server是一个小型的静态文件服务器,为webpack打包的资源文件提供Web服务.并且提供自动刷新和Hot Module Replacement(模块热替换:前端代码变动后 ...

  4. Oracle召回

    后几集录制视频,记录在记录开始的时候不知道怎么,录了几集没有什么,够又一次录,过程中也也把Oracle数据库这部分看了一遍,收获也挺多的,学习是反复积累的过程,对于一些零散的知识点又回想了一下,又一次 ...

  5. libuv和libev 异步I/O库的比较

    libuv 和 libev ,两个名字相当相近的 I/O Library,最近有幸用两个 Library 都写了一些东西,下面就来说一说我本人对两者共同与不同点的主观表述. 高性能网络编程这个话题已经 ...

  6. Nginx支持LInux的软链接或硬链接

    在我们配置nginx的时候,有些时候,大部分都是讲root指向真实的目录.但是有些时候,我们需要指向一个软链接.但是配置的时候,发现会有问题. 我们可以通过以下的方法,来解决,让nginx支持软链接/ ...

  7. 一次 .NET Core 中玩锁的经历:ManualResetEventSlim, Semaphore 与 SemaphoreSlim

    最近同事对  .net core memcached 缓存客户端 EnyimMemcachedCore 进行了高并发下的压力测试,发现在 linux 上高并发下使用 async 异步方法读取缓存数据会 ...

  8. WPF Binding Path妙用代码实现

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  9. 解决Android Studio运行时报Error:java.lang.NullPointerException (no error message)错误

    原文:解决Android Studio运行时报Error:java.lang.NullPointerException (no error message)错误                    ...

  10. ES6中的Promise详解

    Promise 在 JavaScript 中很早就有各种的开源实现,ES6 将其纳入了官方标准,提供了原生 api 支持,使用更加便捷. 定义 Promise 是一个对象,它用来标识 JavaScri ...