题意

F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站

Problem 1502. -- [NOI2005]月下柠檬树

1502: [NOI2005]月下柠檬树

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1534  Solved: 813
[Submit][Status][Discuss]

Description

李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地
坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理。李哲是一个喜爱思考的孩子,当他看到在月光的照射下
柠檬树投在地面上的影子是如此的清晰,马上想到了一个问题:树影的面积是多大呢?李哲知道,直接测量面积是
很难的,他想用几何的方法算,因为他对这棵柠檬树的形状了解得非常清楚,而且想好了简化的方法。李哲将整棵
柠檬树分成了n 层,由下向上依次将层编号为1,2,…,n。从第1到n-1 层,每层都是一个圆台型,第n 层(最上面一
层)是圆锥型。对于圆台型,其上下底面都是水平的圆。对于相邻的两个圆台,上层的下底面和下层的上底面重合
。第n 层(最上面一层)圆锥的底面就是第n-1 层圆台的上底面。所有的底面的圆心(包括树顶)处在同一条与地面垂
直的直线上。李哲知道每一层的高度为h1,h2,…,hn,第1 层圆台的下底面距地面的高度为h0,以及每层的下底面
的圆的半径r1,r2,…,rn。李哲用熟知的方法测出了月亮的光线与地面的夹角为alpha。
为了便于计算,假设月亮的光线是平行光,且地面是水平的,在计算时忽略树干所产生的影子。
李哲当然会算了,但是他希望你也来练练手

Input

第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度)。
第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的高度和每层的高度。
第3行包含n个实数r1,r2,…,rn,表示柠檬树每层下底面的圆的半径。
上述输入文件中的数据,同一行相邻的两个数之间用一个空格分隔。
输入的所有实数的小数点后可能包含1至10位有效数字。
1≤n≤500,0.3<alpha<π/2,0<hi≤100,0<ri≤100

Output

输出1个实数,表示树影的面积。四舍五入保留两位小数。

Sample Input

2 0.7853981633

10.0 10.00 10.00

4.00 5.00

Sample Output

171.97

HINT

Source

[Submit][Status][Discuss]

HOME
Back


한국어 
中文 
فارسی 
English 
ไทย

版权所有 ©2008-2018 大视野在线测评 | 湘ICP备13009380号
Based on opensource project hustoj.

分析

参照GFY的题解。

首先,做这题需要知道一点:一个圆从任意一个角度投影都永远是一个圆。

我们可以画出一个简图如下:



如图,这棵树倒影之后,有图中两个圆心p1,p2,他们的横坐标即为这颗树上他们原先的高度乘以cotΘ,而他们的半价却不会变化,因为月光是平行光,所以在圆面与地面平行时,两点间距离不会变化。



如图,倒影最终是圆和他们之间的公切线构成的图形,最右边的点可以看做是半径为eps的圆。之后,可以利用simpson积分公式计算,simpson(l,r)=(f(l)+f(r)+4f(mid))(r-l)/6,若是精度差距大可以继续递归,注意:本题的eps要1e-6以下才能过。

时间复杂度?不知道

代码

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
typedef long long ll; co double eps=1e-6;
co int N=501;
struct Point{
double x,y;
}s[N],e[N],a[N],b[N];
int n;
il double sqr(double x) {return x*x;}
void cal(Point&s,Point&e,Point a,Point b){
if(fabs(a.y-b.y)<eps) return s=a,e=b,void();
double k=(b.y-a.y)/(b.x-a.x);
s.x=a.x-k*a.y,s.y=sqrt(sqr(a.y)-sqr(a.x-s.x));
e.x=b.x-k*b.y,e.y=sqrt(sqr(b.y)-sqr(b.x-e.x));
// s=(Point){a.x-k*a.y,sqrt(sqr(a.y)-sqr(a.x-s.x))};
// e=(Point){b.x-k*b.y,sqrt(sqr(b.y)-sqr(b.x-e.x))};
}
double f(double x){
double y=0;
for(int i=1;i<=n+1;++i)if(fabs(x-a[i].x)<=a[i].y)
y=std::max(y,sqrt(sqr(a[i].y)-sqr(x-a[i].x)));
for(int i=1;i<=n;++i)if(a[i+1].x-a[i].x-fabs(a[i].y-a[i+1].y)>eps&&s[i].x<=x&&x<=e[i].x)
y=std::max(y,s[i].y+(x-s[i].x)*(e[i].y-s[i].y)/(e[i].x-s[i].x));
return y;
}
double work(double L,double R){
double mid=(L+R)/2;
return (f(L)+f(R)+f(mid)*4)*(R-L)/6;
}
double simpson(double L,double R){
double mid=(L+R)/2;
double x1=work(L,mid),x2=work(mid,R),x3=work(L,R);
if(fabs(x1+x2-x3)<eps) return x1+x2;
else return simpson(L,mid)+simpson(mid,R);
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
double theta;
scanf("%d%lf",&n,&theta);
theta=1/tan(theta);
double h=0;
for(int i=1;i<=n+1;++i){
scanf("%lf",&a[i].x);
h+=a[i].x,a[i].x=h*theta;
}
for(int i=1;i<=n;++i) scanf("%lf",&a[i].y);
a[n+1].y=a[n+2].y=0;
double L=a[1].x,R=a[n+1].x;
for(int i=1;i<=n;++i){
L=std::min(L,a[i].x-a[i].y),R=std::max(R,a[i].x+a[i].y);
if(a[i+1].x-a[i].x-fabs(a[i+1].y-a[i].y)>eps) // not in
cal(s[i],e[i],a[i],a[i+1]);
}
printf("%.2lf\n",2*simpson(L,R));
return 0;
}

[NOI2005]月下柠檬树的更多相关文章

  1. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  2. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

  3. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  4. 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法

    LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...

  5. 1502: [NOI2005]月下柠檬树 - BZOJ

    Description Input 文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度).第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的 ...

  6. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  7. 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...

  8. BZOJ1502:[NOI2005]月下柠檬树——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...

  9. 【bzoj1502】 NOI2005—月下柠檬树

    http://www.lydsy.com/JudgeOnline/problem.php?id=1502 (题目链接) 今天考试题,从来没写过圆的面积之类的东西..GG 题意 一颗树由n个圆台组成,现 ...

随机推荐

  1. linux中信号的API详解实例

    /************************************************************************* > File Name: signal.c ...

  2. 《ucore lab2》实验报告

    资源 ucore在线实验指导书 我的ucore实验代码 练习1:实现 first-fit 连续物理内存分配算法 题目 在实现first fit 内存分配算法的回收函数时,要考虑地址连续的空闲块之间的合 ...

  3. java实现邮箱发送邮件功能

    邮箱验证是一个很常见的功能了,基本上每个网站都会用的到,java也有专门的jar来处理邮件发送等服务,这里只是简单的实现一下发送邮件的功能,具体jar包就不再提供了,我会把所有需要引用的包都贴出来,方 ...

  4. 创建线程的三种方式(Thread、Runnable、Callable)

    方式一:继承Thread类实现多线程: 1. 在Java中负责实现线程功能的类是java.lang.Thread 类. 2. 可以通过创建 Thread的实例来创建新的线程. 3. 每个线程都是通过某 ...

  5. 学习makefile 的网址

    http://www.ruanyifeng.com/blog/2015/02/make.html http://blog.csdn.net/ruglcc/article/details/7814546 ...

  6. OSI七层模型对应功能及协议

    前言 OSI七层模型:纯理论模型,所有实际设备和协议都不能对应理论模型. 每一层对应着实际的设备 物理层:中继器.集线器.双绞线 数据链路层:网桥.以太网交换机.网卡 网路层:路由器.三层交换机 传输 ...

  7. JPA 一对一 一对多 多对一 多对多配置

    1 JPA概述 1.1 JPA是什么 JPA (Java Persistence API) Java持久化API.是一套Sun公司 Java官方制定的ORM 方案,是规范,是标准 ,sun公司自己并没 ...

  8. BSGS和EXBSGS

    也许更好的阅读体验 \(Description\) 给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\) \(BSGS\) \(BS ...

  9. C#插入时间

    //获取日期+时间 DateTime.Now.ToString(); // 2008-9-4 20:02:10 DateTime.Now.ToLocalTime().ToString(); // 20 ...

  10. Linux Wireless Supported Devices

    Linux Wireless Supported Devices https://ark.intel.com/content/www/us/en/ark/products/series/59484/i ...