题目链接:洛谷

我们知道要求的是\([l_1,r_1],[l_2,r_2],[l_3,r_3]\)的可重集取交的大小,肯定是要用bitset的,那怎么做可重集呢?

那就是要稍微动点手脚,首先在离散化的时候,将\(a_x\)设为\(\leq a_x\)的数的个数,然后再插入一个数的时候,将\(a_x-cnt_{a_x}\)设为1,删除的时候设为0,然后直接取交就可以了。正确性比较显然。

还有一个问题就是如何存下\(100000*100000\)的bitset,那肯定是存不下的,所以把询问分成3部分,然后每块分别做就可以用时间换空间了。

#include<bits/stdc++.h>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = 100010, M = 33340;
int n, m, _n, len, a[N], val[N], cnt[N], ql, qr, tmp[M];
bitset<N> ans[M], now;
struct Query {
int l, r, id;
inline bool operator < (const Query &o) const {
if(l / len != o.l / len) return l / len < o.l / len;
if(l / len & 1) return r > o.r;
return r < o.r;
}
} que[N];
inline void add(int x){++ cnt[x]; now[x - cnt[x]] = 1;}
inline void del(int x){now[x - cnt[x]] = 0; -- cnt[x];}
inline void solve(int m){
for(Rint i = 1;i <= n;i ++) cnt[i] = 0;
for(Rint i = 1;i <= m;i ++) ans[i].set(), tmp[i] = 0; now.reset(); ql = 1; qr = 0;
for(Rint i = 1;i <= 3 * m;i ++) scanf("%d%d", &que[i].l, &que[i].r), tmp[que[i].id = (i + 2) / 3] += que[i].r - que[i].l + 1;
sort(que + 1, que + 3 * m + 1);
for(Rint i = 1;i <= 3 * m;i ++){
while(ql > que[i].l) add(a[-- ql]);
while(qr < que[i].r) add(a[++ qr]);
while(qr > que[i].r) del(a[qr --]);
while(ql < que[i].l) del(a[ql ++]);
ans[que[i].id] &= now;
}
for(Rint i = 1;i <= m;i ++) printf("%d\n", tmp[i] - 3 * ans[i].count());
}
int main(){
scanf("%d%d", &n, &m); len = sqrt(n);
for(Rint i = 1;i <= n;i ++) scanf("%d", a + i), val[i] = a[i];
sort(val + 1, val + n + 1);
_n = unique(val + 1, val + n + 1) - val - 1;
for(Rint i = 1;i <= n;i ++) a[i] = lower_bound(val + 1, val + _n + 1, a[i]) - val;
for(Rint i = 1;i <= _n;i ++) val[i] = 0;
for(Rint i = 1;i <= n;i ++) ++ val[a[i]];
for(Rint i = 1;i <= _n;i ++) val[i] += val[i - 1];
for(Rint i = 1;i <= n;i ++) a[i] = val[a[i]];
solve(m / 3); solve((m + 1) / 3); solve((m + 2) / 3);
}

Luogu4688 [Ynoi2016]掉进兔子洞 【莫队,bitset】的更多相关文章

  1. [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset)

    [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset) 题面 一个长为 n 的序列 a.有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间 ...

  2. BZOJ 4939: [Ynoi2016]掉进兔子洞(莫队+bitset)

    传送门 解题思路 刚开始想到了莫队+\(bitset\)去维护信息,结果发现空间不太够..试了各种奇技淫巧都\(MLE\),最后\(\%\)了发题解发现似乎可以分段做..这道题做法具体来说就是开\(3 ...

  3. BZOJ.4939.[Ynoi2016]掉进兔子洞(莫队 bitset 分组询问)

    BZOJ 洛谷 删掉的数即三个区间数的并,想到bitset:查多个区间的数,想到莫队. 考虑bitset的每一位如何对应每个数的不同出现次数.只要离散化后不去重,每次记录time就可以了. 但是如果对 ...

  4. BZOJ4939: [Ynoi2016]掉进兔子洞(莫队 bitset)

    题意 题目链接 一个长为 n 的序列 a. 有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间剩下的数的个数和,询问独立. 注意这里删掉指的是一个一个删,不是把等于 ...

  5. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

  6. luogu P4688 [Ynoi2016]掉进兔子洞 bitset 莫队

    题目链接 luogu P4688 [Ynoi2016]掉进兔子洞 题解 莫队维护bitset区间交个数 代码 // luogu-judger-enable-o2 #include<cmath&g ...

  7. 【洛谷 P4688】 [Ynoi2016]掉进兔子洞(bitset,莫队)

    题目链接 第一道Ynoi 显然每次询问的答案为三个区间的长度和减去公共数字个数*3. 如果是公共数字种数的话就能用莫队+bitset存每个区间的状态,然后3个区间按位与就行了. 但现在是个数,bits ...

  8. bzoj千题计划320:bzoj4939: [Ynoi2016]掉进兔子洞(莫队 + bitset)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4939 ans= r1-l1+1 + r2-l2+1 +r3-l3+1 - ∑ min(cnt1[i ...

  9. BZOJ4939 Ynoi2016掉进兔子洞(莫队+bitset)

    容易发现要求三个区间各数出现次数的最小值.考虑bitset,不去重离散化后and一发就可以了.于是莫队求出每个区间的bitset.注意空间开不下,做多次即可.输出的东西错了都能调一年服了我了. #in ...

随机推荐

  1. zabbix 数据库分表操作

    近期zabbix数据库占用的io高,在页面查看图形很慢,而且数据表已经很大,将采用把数据库的数据目录移到新的磁盘,将几个大表进行分表操作 一.数据迁移: 1.数据同步到新的磁盘上,先停止mysql(不 ...

  2. Python基础初识

    一.安装 暂时没空写,预留 二.python基础初识 2.1 注释 当行注释:# 被注释内容 多行注释:'''被注释内容''',或者"""被注释内容"" ...

  3. VBA循环(十一)

    当需要多次执行一段代码时,就可以使用循环语句. 一般来说,语句是按顺序执行的:函数中的第一个语句首先执行,然后是第二个,依此类推. 编程语言提供了各种控制结构,允许更复杂的执行路径. 循环语句允许多次 ...

  4. 这个一个对ES6多个异步处理的并发继发思想的总结和理解

    1.首先我们需要理解的是js中for循环.forEach循环.map循环的一些差异性,直接说了为后面说到的提供一些依据 1.1 for循环最基本,也是最容易理解的. 1.2 forEach和map用法 ...

  5. TypeScript算法与数据结构-栈篇

    本文的源码在这里,可以参考一下 栈也是一种使用非常广泛的线性数据结构,它具有后进先出last in first out的特点.通俗的例子就像我们平时一本一本的往上放书,等到我们又想用书时,我们首先接触 ...

  6. jQuery标签操作

    样式操作 样式类操作 //添加指定的css类名 $('元素选择器')addClass('类名'); //移除指定的css类名 removeClass(); //判断样式存不存在 hasClass(); ...

  7. UI5-技术篇-事务Tcode

    1.LPD_CUST 快速启动板概览 2./N/UI2/FLPD_CONF 创建目录与组(全部客户端) 3./N/UI2/FLPD_CUST 创建目录与组(当前客户端) 4./N/UI2/FLP 编辑 ...

  8. SDcms1.8代码审计

    由于工作原因,分析了很多的cms也都写过文章,不过觉得好像没什么骚操作都是网上的基本操作,所以也就没发表在网站上,都保存在本地.最近突然发现自己博客中实战的东西太少了,决定将以前写的一些文章搬过来,由 ...

  9. 认识和学习redis

    redis VS mysql """ redis: 内存数据库(读写快).非关系型(操作数据方便) mysql: 硬盘数据库(数据持久化).关系型(操作数据间关系) 大量 ...

  10. 【TestNG】使用代码方式调用TestNG用例执行

    TestNG的用例除了直接运行之外,还可以使用代码来调用,这样做的好处在于我们可以将其嵌入其他代码中,来执行这些TestNG用例,方法如下: 1.直接调用用例类 范例:定义了两个测试用例类为Depen ...