TensorFlow实战第五课(MNIST手写数据集识别)
Tensorflow实现softmax regression识别手写数字
MNIST手写数字识别可以形象的描述为机器学习领域中的hello world。
MNIST是一个非常简单的机器视觉数据集。它由几万张28*28像素的手写数字组成,这些图片只包含灰度值信息。我们的任务就是对这些手写数字进行分类。转换为0-9共十个分类。
首先在命令行中运行如下代码加载MNIST手写数据集:
from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
#创建文件夹存放数据
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
数据集中包含55000个样本,测试集中有10000个样本,同时验证集有5000个样本。每一个样本都有他对应的标注信息,即label。
我们将在训练集上训练模型,在验证集上检验效果并决定何时完成训练,最后我们在测评及评测模型效果。
准备好数据后我们开始设计算法。我们采用的是softmax regression的算法训练手写数字识别的分类模型。数字分为0-9,所以一共有十个类别,当我们对一张图片进行预测时,softmax regression会对每一种类别估算一个概率,然后取估算概率最大的数字作为模型的输出结果。
注:当我们处理多分类模型时,通常需要使用softmax regression。例如卷积神经网络或者循环神经网络,如果是分类模型,那么最后一层同样是softmax regression。
loss函数选择的是交叉熵函数,交叉熵用来衡量预测值与真实值的相似程度,如果完全相同,他们的交叉熵等于零。
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1])) # loss
train方法(最优化方法)采用梯度下降法。
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
# tf.initialize_all_variables() 这种写法马上就要被废弃
# 替换成下面的写法:
sess.run(tf.global_variables_initializer())
完整代码:
#classification 分类学习 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
#创建文件夹存放数据
mnist = input_data.read_data_sets('MNIST_data',one_hot=True) def add_layer(inputs,in_size,out_size,activation_function=None):
#添加一个以上的层 并且返回这个层的输出 Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weights)+biases if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
return result #define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#None就是不规定他有多少sample,但是规定大小为28*28
ys = tf.placeholder(tf.float32,[None,10]) #add output layer
#激励函数采用softmax函数
prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax) # the error between prediction and real data
'''loss函数即最优化目标函数 选用交叉熵函数
交叉熵用来衡量预测值和真实值相似程度
如果完全相同 ,他们的交叉熵为零
'''
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1])) # loss
#采用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init) for i in range(2000):
#每次只取100张图片
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))
输出结果:

TensorFlow实战第五课(MNIST手写数据集识别)的更多相关文章
- TensorFlow系列专题(六):实战项目Mnist手写数据集识别
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 导读 MNIST数据集 数据处理 单层隐藏层神经网络的实现 多层隐藏层神经 ...
- Tensorflow项目实战一:MNIST手写数字识别
此模型中,输入是28*28*1的图片,经过两个卷积层(卷积+池化)层之后,尺寸变为7*7*64,将最后一个卷积层展成一个以为向量,然后接两个全连接层,第一个全连接层加一个dropout,最后一个全连接 ...
- 吴裕雄 python 神经网络——TensorFlow 实现LeNet-5模型处理MNIST手写数据集
import os import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- Tensorflow之MNIST手写数字识别:分类问题(1)
一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点: 1.将离散特征的取值扩展 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...
随机推荐
- puppet完全攻略(二)让puppet代码支持vim高亮显示
puppet完全攻略(二)让puppet代码支持vim高亮显示 2012-06-10 13:33:01 标签:puppet viong puppet完全攻略 原创作品,允许转载,转载时请务必以超链接形 ...
- Mybatis 向oracle批量插入与更新数据
插入 <insert id="batchSave" parameterType="java.util.List"> INSERT INTO T_UP ...
- POJ 2142 - The Balance [ 扩展欧几里得 ]
题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...
- Java根据余弦定理计算文本相似度
项目中需要算2个字符串的相似度,是根据余弦相似性算的,下面具体介绍一下: 余弦相似度计算 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小.余弦值越接近1,就表明夹角越接近0度, ...
- python拼音库pypinyin库详解
# -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 9:20 from pypinyin import pinyin, lazy ...
- 关于brew没有搜索到php的解决方案
在终端添加php的资源包 brew tap homebrew/homebrew-php 链接 https://github.com/Homebrew/homebrew-php
- Chrome 神器,神奇的技巧
谷歌开发者工具是前端日常不可缺少的神奇,写布局,找 bug,优化加载速度统统靠他.但是你真的了解他么?这篇文章是专门介绍谷歌浏览器各种好用小技巧的.不是什么长篇大论,旨在提高你的开发效率,早日完工回家 ...
- 性能指标:TPS 并发数 响应时间 QPS
响应时间(RT)reponse time指系统对请求作出响应的时间.一般关注平均响应时间和最大响应时间.对于单机没有并发操作的应用系统而言,普遍认为响应时间是一个合理且准确的性能指标,但响应时间并不能 ...
- html上传图片后,在页面显示上传的图片
html上传图片后,在页面显示上传的图片 1.html <form class="container" enctype="multipart/form-data&q ...
- Python中导入类
python导入类与导入函数,模块基本一样,一个模块fun,其中包含三个类 class Dog(): def __init__(self,name): self.name=name def bark( ...