费马小定理(Fermat Theory)

数论中的一个重要定理,其内容为:

假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

a^(p-1)%p=1

(其中%为取模操作,且a<p,p为质数)

费马小定理是初等数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理),中国剩余定理(又称孙子定理)之一,在初等数论中有着非常广泛和重要的应用。实际上,它是欧拉定理的一个特殊情况(即

  

,见于词条“欧拉函数”)。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#define ll long long int//能够直接使用long long using namespace std; ll n;
ll pd[]={,,,,,,,,,,};
ll fastmul(ll a,ll b)
{
ll r=;
ll base=a;
while(b!=)
{
if(b%!=)
{
b--;
r=(r+base)%n;
}
b=b/;
base=(base+base)%n;
}
return r%n;
}
ll fastpow(ll a,ll b)
{
ll r=;
ll base=a;
while(b!=)
{
if(b%!=)
r=fastmul(r,base)%n;
base=fastmul(base,base)%n;
b=b/;
}
return r%n;
}
ll check(ll n)
{
if(n==) return ;
if(n<&&(n%==)) return ;
for(ll i=;i<;i++)
{
ll x=pd[i];//进行特判
if(x%n==)
continue;//继续往下判断循环条件执行语句
ll ans=fastpow(x,n-)%n;
if(ans!=)
return ;
}
return ;
}
int main()
{
//srand(time(0));
//scanf("%lld",&n);
cin>>n;
for(int i=;i<=n;i++)
{
if(check(i)) printf("%d\n",i);
}
return ;
}

费马小定理 x的更多相关文章

  1. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  2. nyoj1000_快速幂_费马小定理

    又见斐波那契数列 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列 ...

  3. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  4. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

  5. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  6. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  7. HDU 5667 Sequence 矩阵快速幂+费马小定理

    题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...

  8. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  9. HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法

    题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...

  10. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

随机推荐

  1. Scratch教程:谁是真悟空

    在西游记中,有一集是“真假悟空”,六耳猕猴变成了悟空的模样与真悟空真假难辨,打的不可开交. 在Scartch中,我们常常会使用一个本体来生成多个克隆体,这在开发过程中有重要的意义.但在实际操作中,每个 ...

  2. [Vue]vue-loader作用

    一.vue文件 vue文件是一个自定义的文件类型,用类HTML语法描述一个vue组件,每个.vue组件包含三种类型的顶级语言快< template>< script>< ...

  3. ROUTE: route addition failed

    ROUTE: route addition failed 1)报FlushIpNetTable failed on interface错误 应对:以管理员身份运行OpenV-P-N 2)报Warnin ...

  4. freemarker循环、下标及判断

    一.freemarker中list循环使用非常频繁,下面介绍lfreemarker中list简单的用法 1.在freemarker中遍历list数组使用list指令:<#list sequenc ...

  5. Android三种菜单的使用方式

    一.选项菜单(OptionMenu) 在res目录下新建menu目录,用于放置菜单布局文件(右键res->new->Android Resource Directory->menu) ...

  6. es6中Array.from()

    Array.from()方法就是将一个类数组对象或者可遍历对象转换成一个真正的数组. 那么什么是类数组对象呢?所谓类数组对象,最基本的要求就是具有length属性的对象. 1.将类数组对象转换为真正数 ...

  7. 3.Redis数据类型

    Redis的五大数据类型: 1.string(字符串) string是redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value. string类型是二进制安 ...

  8. javascript实现Html Table数据表分页

    直接调用: <style type="text/css">           th         {             font-size:18px;     ...

  9. Flutter中的普通路由与命名路由(Navigator组件)

    Flutter 中的路由通俗的讲就是页面跳转.在 Flutter 中通过 Navigator 组件管理路由导航.并提供了管理堆栈的方法.如:Navigator.push 和 Navigator.pop ...

  10. (转载)关于FLASH寿命的读写方法

    NOR(或非)和NAND(与非)是市场上两种主要的Flash闪存,sNORFLASH 和CPU之间不需要其他电路控制,NOR flash可以芯片内执行程序,而NAND FLASH 和CPU 的接口必须 ...