spark job分析
spark job
spark job提交
三级调度框架,
DagSch,计算stage,提交阶段,将stage映射成taskset,提交taskset给tasksch。
TaskSch
BackendSch
setMaster("local[n]")
n表示使用n个线程模拟的spark集群下的worker数据。
默认是1,n称为并发度。
textFile("..." , m),m是分区数,默认收到并发度的影响。
1. local
new LocalSchedulerBackend(sc.getConf, scheduler, 1)
2. local[4] / local[*]
* 是cpu内核数
def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
val threadCount = if (threads == "*") localCpuCount else threads.toInt
3. local[m,n]
m是并发度,n是重试次数。
local[N, cores, memory]
4. spark://(.*)
RPC
remote procedure call ,远程过程调用。socket编程。
TaskScheduler
任务调度器接口,spark中只有一种实现TaskSchedulerImpl。
textFile()
加载文件时,可指定最小分区数,但最小分区数有默认值。
def textFile(path: String,minPartitions: Int = defaultMinPartitions)
//默认最小分区不会超过2
def defaultMinPartitions: Int = math.min(defaultParallelism, 2)
//spark上下文的默认并发度 = 任务调度器的默认并发度
def SparkContext.defaultParallelism: Int = {taskScheduler.defaultParallelism }
//任务调度器的默认并发度 = 后台调度器的默认并发度
override def taskScheduler.defaultParallelism(): Int = backend.defaultParallelism()
1.LocalScheduclerBackend
//local 本地后台调度器,读取默认并发度配置属性,若没有,则采用cpu内核数作为默认并发度。
new LocalSchedulerBackend(sc.getConf, scheduler, 1)
//local[*|n],取出指定的内核数
new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
//local[N,cores,memory],跟local[n]
new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
//
override def defaultParallelism(): Int = scheduler.conf.getInt("spark.default.parallelism", totalCores)
2.CoarseGrainedSchedulerBackend
粗粒度后台调度器
3.StandaloneSchedulerBackend
独立模式后台调度器 , 继承与CoarseGrainedSchedulerBackend.
spark最小分区数计算
sc.textFile( ..., n) ;
HadoopRDD -> MapPaqrtitionRDD.
rdd.partitions.length ;
Sparkjob在集群模式下,分两步走
1.创建SparkContext对象时,在spark master中注册应用.分配资源,在worker节点启动Executor进程。
spark集群默认的资源使用
core : 使用worker节点的所有内核,内核进行物理检测。
memory : 内存使用1g内存,内存不进行物理检测。
修改默认值
[spark/conf/spark-env.sh]
...
# 每个worker使用的内核数
export SPARK_WORKER_CORES=6
#每个worker使用内存数
export SPARK_WORKER_MEMORY=6g
#是否可以在一个节点启动几个worker进程
export SPARK_WORKER_INSTANCES=2
#master和worker进程本身的内存数
export SPARK_DAEMON_MEMORY=200m
[修改完之后分发]
xsync.sh spark-env.sh
Spark job的资源控制
spark-submit --help
Usage: spark-submit [options] <app jar | python file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Usage: spark-submit run-example [options] example-class [example args]
Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in --packages to avoid
dependency conflicts.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor.
--conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath.
c
--proxy-user NAME User to impersonate when submitting the application.
This argument does not work with --principal / --keytab.
--help, -h Show this help message and exit.
--verbose, -v Print additional debug output.
--version, Print the version of current Spark.
Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: 1).
Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors.
Spark standalone and YARN only:
--executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode,
or all available cores on the worker in standalone mode)
YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
If dynamic allocation is enabled, the initial number of
executors will be at least NUM.
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on
secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above. This keytab will be copied to
the node running the Application Master via the Secure
Distributed Cache, for renewing the login tickets and the
delegation tokens periodically.
--driver-memory 2g //控制driver堆内存,默认1g
--executor-memory MEM //每个executor的内存,默认 1G.
[standalone + cluster]
--driver-cores NUM //控制driver的内核数
[Spark standalone和 Mesos]
--total-executor-cores NUM //用于所有executor的总的内核数
[spark standalone | yarn]
--executor-cores //每个执行器的内核数,yarn模式是1,standalone是所有可能内核。
[YARN-only]
--driver-cores NUM //driver内核数,只用于cluster模式(Default: 1).
--num-executors NUM //启动的执行器个数(Default: 2).
-- 每个执行器分配4个核
spark-shell --master spark://s201:7077 --driver-memory 800m --executor-memory 800m --executor-cores 10
--
spark-shell --master spark://s201:7077 --executor-memory 3g --executor-cores 4 --total-executor-cores 16
-- yarn模式下指定资源
spark-submit --master yarn --deploy-mode client --class TempAggDemoScala_GroupByKey --executor-memory 1g --executor-cores 2 --num-executors 4 myspark.jar 1000
spark-submit --master yarn --deploy-mode cluster --class TempAggDemoScala_GroupByKey --executor-memory 1g --executor-cores 2 --num-executors 4 myspark.jar 1000
spark job分析的更多相关文章
- Spark源代码分析之六:Task调度(二)
话说在<Spark源代码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这种方法针对接收到的ReviveOffe ...
- Spark原理分析目录
1 Spark原理分析 -- RDD的Partitioner原理分析 2 Spark原理分析 -- RDD的shuffle简介 3 Spark原理分析 -- RDD的shuffle框架的实现概要分析 ...
- 从0到1进行Spark history分析
一.总体思路 以上是我在平时工作中分析spark程序报错以及性能问题时的一般步骤.当然,首先说明一下,以上分析步骤是基于企业级大数据平台,该平台会抹平很多开发难度,比如会有调度日志(spark-sub ...
- Spark网络通信分析
之前分析过spark RPC的基本流程(spark RPC详解),其实无论是RPC还是Spark内部的数据(Block)传输,都依赖更底层的网络通信,本文将对spark的网络通信做一下剖析. 1,概要 ...
- Spork: Pig on Spark实现分析
介绍 Spork是Pig on Spark的highly experimental版本号,依赖的版本号也比較久,如之前文章里所说.眼下我把Spork维护在自己的github上:flare-spork. ...
- hive Spark SQL分析窗口函数
Spark1.4发布,支持了窗口分析函数(window functions).在离线平台中,90%以上的离线分析任务都是使用Hive实现,其中必然会使用很多窗口分析函数,如果SparkSQL支持窗口分 ...
- Spark案例分析
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...
- Spark源代码分析之中的一个:Job提交执行总流程概述
Spark是一个基于内存的分布式计算框架.执行在其上的应用程序,依照Action被划分为一个个Job.而Job提交执行的总流程.大致分为两个阶段: 1.Stage划分与提交 (1)Job依照RDD之间 ...
- spark复习笔记(4):spark脚本分析
1.[start-all.sh] #!/usr/bin/env bash # # Licensed to the Apache Software Foundation (ASF) under one ...
随机推荐
- 基于tesseract-OCR进行中文识别
1. 环境准备 1.1 下载 下载Tesseract-OCR安装包,地址为: https://digi.bib.uni-mannheim.de/tesseract/tesseract-ocr-w32- ...
- wordpress5.0+中 Notice: Undefined index: HTTP_REFERER 问题解决
都说现在搭网站很简单了,但真遇到问题了还真不一定能解决. 这次搭建的网站是用的wordpress版本5.0.4,以为操作和以前的低版本一样,结果做出来还是遇到问题了. 网站搭好后,首页总在顶端出现一行 ...
- python学习-45 模块
模块 -----模块包括三种: ····python标准库 ····第三方模块 ····应用程序自定义模块 -------应用程序自定义模块 1.建立两个py文件,一个是定义函数用的cal.py de ...
- python学习-14 基本数据类型3
1.字符串 获取字符串的字符,例如: test = 'abcd' a= test[0] # 通过索引,下标,获取字符串中的某一个字符 print(a) b = test[0:1] # 通过下标的 范围 ...
- 使用寄存器点亮LED(第2节)—寄存器映射代码讲解
// 打开 GPIOB 端口的时钟 *( unsigned int * )0x40021018|= ( 1 << 4 ); // 配置PC2 IO口为通用推挽输出,速度为10M *( un ...
- (三)第一个 Hibernate项目
1.创建java工程,并导入hibernate所需要的jar包 2.通过IDE构建一个基础的Hibernate工程. 产生 hibernate.cfg.xml的框架总配置文件. H ...
- office2016激活码 最新各个版本 激活
office2016专业版激活密钥 Microsoft Office 2016 Pro Plus Retail 零售版序列号密钥: BHXN7-MQB36-MTHQ4-8MHKV-CYT97 Micr ...
- Asp.net core中间件实现原理及用法解说
简述asp.net core中间件的实现思路 原文地址:https://www.cnblogs.com/shengyu-kmust/p/11583974.html 一次http请求的过程,就是对一个R ...
- SIFT算法研究
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://underthehood.blog.51cto.com/2531780/65835 ...
- java封装数据类型——Boolean
众所周知,java对常见的原始数据类型都提供了对应的封装类型,增加一些常用的特性(如 计算hash值.比较相等.类型转换等),以扩展他们对数据处理的能力,使得他们更好地适应面向对象编程的各种场景.今天 ...