spark job分析
spark job
spark job提交
三级调度框架,
DagSch,计算stage,提交阶段,将stage映射成taskset,提交taskset给tasksch。
TaskSch
BackendSch
setMaster("local[n]")
n表示使用n个线程模拟的spark集群下的worker数据。
默认是1,n称为并发度。
textFile("..." , m),m是分区数,默认收到并发度的影响。
1. local
new LocalSchedulerBackend(sc.getConf, scheduler, 1)
2. local[4] / local[*]
* 是cpu内核数
def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
val threadCount = if (threads == "*") localCpuCount else threads.toInt
3. local[m,n]
m是并发度,n是重试次数。
local[N, cores, memory]
4. spark://(.*)
RPC
remote procedure call ,远程过程调用。socket编程。
TaskScheduler
任务调度器接口,spark中只有一种实现TaskSchedulerImpl。
textFile()
加载文件时,可指定最小分区数,但最小分区数有默认值。
def textFile(path: String,minPartitions: Int = defaultMinPartitions)
//默认最小分区不会超过2
def defaultMinPartitions: Int = math.min(defaultParallelism, 2)
//spark上下文的默认并发度 = 任务调度器的默认并发度
def SparkContext.defaultParallelism: Int = {taskScheduler.defaultParallelism }
//任务调度器的默认并发度 = 后台调度器的默认并发度
override def taskScheduler.defaultParallelism(): Int = backend.defaultParallelism()
1.LocalScheduclerBackend
//local 本地后台调度器,读取默认并发度配置属性,若没有,则采用cpu内核数作为默认并发度。
new LocalSchedulerBackend(sc.getConf, scheduler, 1)
//local[*|n],取出指定的内核数
new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
//local[N,cores,memory],跟local[n]
new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
//
override def defaultParallelism(): Int = scheduler.conf.getInt("spark.default.parallelism", totalCores)
2.CoarseGrainedSchedulerBackend
粗粒度后台调度器
3.StandaloneSchedulerBackend
独立模式后台调度器 , 继承与CoarseGrainedSchedulerBackend.
spark最小分区数计算
sc.textFile( ..., n) ;
HadoopRDD -> MapPaqrtitionRDD.
rdd.partitions.length ;
Sparkjob在集群模式下,分两步走
1.创建SparkContext对象时,在spark master中注册应用.分配资源,在worker节点启动Executor进程。
spark集群默认的资源使用
core : 使用worker节点的所有内核,内核进行物理检测。
memory : 内存使用1g内存,内存不进行物理检测。
修改默认值
[spark/conf/spark-env.sh]
...
# 每个worker使用的内核数
export SPARK_WORKER_CORES=6
#每个worker使用内存数
export SPARK_WORKER_MEMORY=6g
#是否可以在一个节点启动几个worker进程
export SPARK_WORKER_INSTANCES=2
#master和worker进程本身的内存数
export SPARK_DAEMON_MEMORY=200m
[修改完之后分发]
xsync.sh spark-env.sh
Spark job的资源控制
spark-submit --help
Usage: spark-submit [options] <app jar | python file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Usage: spark-submit run-example [options] example-class [example args]
Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in --packages to avoid
dependency conflicts.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor.
--conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath.
c
--proxy-user NAME User to impersonate when submitting the application.
This argument does not work with --principal / --keytab.
--help, -h Show this help message and exit.
--verbose, -v Print additional debug output.
--version, Print the version of current Spark.
Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: 1).
Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors.
Spark standalone and YARN only:
--executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode,
or all available cores on the worker in standalone mode)
YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
If dynamic allocation is enabled, the initial number of
executors will be at least NUM.
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on
secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above. This keytab will be copied to
the node running the Application Master via the Secure
Distributed Cache, for renewing the login tickets and the
delegation tokens periodically.
--driver-memory 2g //控制driver堆内存,默认1g
--executor-memory MEM //每个executor的内存,默认 1G.
[standalone + cluster]
--driver-cores NUM //控制driver的内核数
[Spark standalone和 Mesos]
--total-executor-cores NUM //用于所有executor的总的内核数
[spark standalone | yarn]
--executor-cores //每个执行器的内核数,yarn模式是1,standalone是所有可能内核。
[YARN-only]
--driver-cores NUM //driver内核数,只用于cluster模式(Default: 1).
--num-executors NUM //启动的执行器个数(Default: 2).
-- 每个执行器分配4个核
spark-shell --master spark://s201:7077 --driver-memory 800m --executor-memory 800m --executor-cores 10
--
spark-shell --master spark://s201:7077 --executor-memory 3g --executor-cores 4 --total-executor-cores 16
-- yarn模式下指定资源
spark-submit --master yarn --deploy-mode client --class TempAggDemoScala_GroupByKey --executor-memory 1g --executor-cores 2 --num-executors 4 myspark.jar 1000
spark-submit --master yarn --deploy-mode cluster --class TempAggDemoScala_GroupByKey --executor-memory 1g --executor-cores 2 --num-executors 4 myspark.jar 1000
spark job分析的更多相关文章
- Spark源代码分析之六:Task调度(二)
话说在<Spark源代码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这种方法针对接收到的ReviveOffe ...
- Spark原理分析目录
1 Spark原理分析 -- RDD的Partitioner原理分析 2 Spark原理分析 -- RDD的shuffle简介 3 Spark原理分析 -- RDD的shuffle框架的实现概要分析 ...
- 从0到1进行Spark history分析
一.总体思路 以上是我在平时工作中分析spark程序报错以及性能问题时的一般步骤.当然,首先说明一下,以上分析步骤是基于企业级大数据平台,该平台会抹平很多开发难度,比如会有调度日志(spark-sub ...
- Spark网络通信分析
之前分析过spark RPC的基本流程(spark RPC详解),其实无论是RPC还是Spark内部的数据(Block)传输,都依赖更底层的网络通信,本文将对spark的网络通信做一下剖析. 1,概要 ...
- Spork: Pig on Spark实现分析
介绍 Spork是Pig on Spark的highly experimental版本号,依赖的版本号也比較久,如之前文章里所说.眼下我把Spork维护在自己的github上:flare-spork. ...
- hive Spark SQL分析窗口函数
Spark1.4发布,支持了窗口分析函数(window functions).在离线平台中,90%以上的离线分析任务都是使用Hive实现,其中必然会使用很多窗口分析函数,如果SparkSQL支持窗口分 ...
- Spark案例分析
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...
- Spark源代码分析之中的一个:Job提交执行总流程概述
Spark是一个基于内存的分布式计算框架.执行在其上的应用程序,依照Action被划分为一个个Job.而Job提交执行的总流程.大致分为两个阶段: 1.Stage划分与提交 (1)Job依照RDD之间 ...
- spark复习笔记(4):spark脚本分析
1.[start-all.sh] #!/usr/bin/env bash # # Licensed to the Apache Software Foundation (ASF) under one ...
随机推荐
- pthread_mutexattr_t设置的相关函数及其说明
基本概述 该函数用于C函数的多线程编程中,互斥锁的初始化. 头文件:#include <pthread.h> 函数原型: int pthread_mutex_init(pthread_mu ...
- C++ std::string 在一个字符串前插入一个字符串几种方式
目录 1.直接使用字符串相加 2.使用insert函数 比较:通过Quick C++ Benchmarks 可得到结果 1.直接使用字符串相加 std::string a = "hello& ...
- kubernetes核心组件kube-proxy
一. kube-proxy 和 service kube-proxy是Kubernetes的核心组件,部署在每个Node节点上,它是实现Kubernetes Service的通信与负载均衡机制的重 ...
- Sparse PCA 稀疏主成分分析
Sparse PCA 稀疏主成分分析 2016-12-06 16:58:38 qilin2016 阅读数 15677 文章标签: 统计学习算法 更多 分类专栏: Machine Learning ...
- Django-redis配置cache和session
CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", &q ...
- ASP.NET 使用 SyndicationFeed 输出 Rss
以前生成 RSS 都是使用拼接 Xml 的方式生成的,不仅麻烦而且还不规范. #region 输出指定分类编号的消息源内容... /// <summary> /// 输出指定分类编号的消息 ...
- Html5+Mui前端框架,开发记录(二):提交不了数据?
1.Mui 请求Webapi接口,返回所需要的数据(get,post) mui.ajax({ url: getAddress() + '/api/Qiliu/get?jsoncallback=?', ...
- ELK日志分析系统的搭建
一.ELK简介 ELK是Elasticsearch.Logstash.Kibana的简称,这三者是核心组件. Elasticsearch是数据存储.搜索.分析引擎,功能非常强大:Logstash是日志 ...
- 关于BOM的一些基本知识以及表格的操作
首先先了解什么是BOM? BOM:英文全称Browser Object Model,即浏览器对象模型.浏览器页面初始化时,会在内存创建一个全局对象,用来描述当前窗口的属性和状态,这个全局对象被称为浏览 ...
- linux命令安装docker
安装: 1.Docker要求CentOS系统的内核版本高于 3.10 ,通过 uname -r 命令查看你当前的内核版本是否支持安账docker 2.更新yum包:sudo yum update 3. ...