设共有 $N = \sum_{i=1}^{9} A_i$ 个数字。先把 $N$ 个数字任意分成两组 $A$ 和 $B$,$A$ 中有 $N_A = \floor{N/2}$ 个数字,$B$ 中有 $N_B=\ceil{N/2}$ 个数字。将 $A$ 中数字之和记作 $S_A$,$B$ 中数字之和记作 $S_B$。若 $(S_A - S_B) \bmod 11 \ne 0$,再进行调整。

考虑通过交换 $A$、$B$ 中的数字来改变 $S_A - S_B$ 的值。若有解一定能通过若干次交换操作使得 $S_A - S_B \bmod 11 = 0$。用 $(a, b)$ 表示将 $A$ 中的数字 $a$ 与 $B$ 中的数字 $b$ 进行交换,交换 $a, b$ 之后 $S_A - S_B$ 的变化量是 $-2(a - b)$。

注意到若存在两个数字 $i, j$ 都出现了至少 $10$ 次,则答案一定是 YES。因为当 $k$ 取遍 $1$ 到 $10$,$2k(i - j)$ 也取遍 $1$ 到 $10$(在模 $11$ 的意义下)。

若每个数字都出现了不到 $10$ 次,可以用 DP 解决。令 $f[i][j][k]$ 表示从 $A$ 中取出 $1, 2, \dots, i$ 这 $i$ 种数字共 $j$ 个且取出的数字之和模 $11$ 等于 $k$ 是否有可能。对 $B$ 也进行同样的 DP。

补充:看了官方题解之后发现这个 DP 不必分别对 $A$ 做一次再对 $B$ 做一次。可以只对 $A$ 做一次 DP,方法是把 DP 的第三维改成前 $i$ 个数字造成的差值模 $11$ 等于 $k$。如此定义 DP 状态,最后答案就是 $f[9][\floor{N/2}][0]$。下面的 DP 也可以如此改造。

考虑只有一个数字出现了至少 $10$ 次的情形。设此数字是 $d$。设 $d$ 在 $A$ 中出现了 $d_A$ 次,在 $B$ 中出现了 $d_B$ 次。

可以证明任意操作序列 $(a_1, b_1), \dots, (a_n, b_n)$ 都可以化成等价的操作序列 $(a'_1, b'_1), \dots, (a'_k, b'_k)$ 且满足对于任意 $1 \le i, j \le k$,$a'_i \ne b'_j$。

由于一定存在 $d$ 只作为 $a_i$ 或只作为 $b_i$ 的操作序列,我们只需考虑长度不超过 $t = \max\{N_A - d_A, N_B - d_B\}$ 的操作序列。于是我们可以将 $A$、$B$ 中 $1$ 到 $9$ 的每个数字取出至多 $t$ 个,对这两组数目较少的数字进行 DP。

int main() {
int T;
scan(T);
rep (T) {
kase();
vi a(10);
up (i, 1, 9) scan(a[i]);
int n10 = 0; //出现次数大于等于10的数字的个数
up (i, 1, 9) {
n10 += a[i] >= 10;
}
if (n10 >= 2) {
println("YES");
continue;
}
ll n = accumulate(all(a), 0LL);
ll m = n / 2;
vi b(10);
// 先随机分配,再通过DP判断能否进行调整。
up (i, 1, 9) {
if (a[i] < m) {
swap(a[i], b[i]);
m -= b[i];
} else {
b[i] = (int)m;
a[i] -= (int)m;
break;
}
} ll sa = 0, sb = 0;
up (i, 1, 9) {
sa += a[i] * i;
sb += b[i] * i;
}
ll r = (sa - sb) % 11;
if (r == 0) {
println("YES");
continue;
}
if (r < 0) {
r += 11;
}
// r = r / 2;
// (11 + 1) / 2 是 2 在模 11 下的拟元。
r = r * (11 + 1) / 2 % 11;
// dp[i][j][k] 在前i种数里选择j个数余数是否可能是k
// 用滚动数组去掉dp数组第一维。
int na = 0, nb = 0; up (i, 1, 9) {
if (a[i] < 10) {
na += a[i];
}
if (b[i] < 10) {
nb += b[i];
}
}
auto t = max(na, nb);
up (i, 1, 9) {
a[i] = min(a[i], t);
b[i] = min(b[i], t);
}
na = accumulate(all(a), 0);
nb = accumulate(all(b), 0);
vv<int> A(na + 1, vi(11));
vv<int> B(nb + 1, vi(11));
A[0][0] = 1;
B[0][0] = 1; int ca = 0, cb = 0; up (i, 1, 9) {
if (a[i] > 0) {
down (j, ca, 0) {
rng (k, 0, 11) {
if (A[j][k]) {
up (l, 1, a[i]) {
A[j + l][(k + l * i) % 11] = true;
}
}
}
}
ca += a[i];
}
if (b[i] > 0) {
down (j, cb, 0) {
rng (k, 0, 11) {
if (B[j][k]) {
up (l, 1, b[i]) {
B[j + l][(k + l * i) % 11] = true;
}
}
}
}
cb += b[i];
}
} bool flag = false;
up (i, 1, min(na, nb)) {
rng (j, 0, 11) {
if (B[i][j] && A[i][(j + r) % 11]) {
flag = true;
break;
}
}
if (flag) break;
}
println(flag ? "YES" : "NO");
}
return 0;
}

Kick Start 2019 Round H. Elevanagram的更多相关文章

  1. kick start 2019 round D T3题解

    ---恢复内容开始--- 题目大意:共有N个房子,每个房子都有各自的坐标X[i],占据每个房子需要一定花费C[i].现在需要选择K个房子作为仓库,1个房子作为商店(与题目不同,概念一样),由于仓库到房 ...

  2. kick start 2019 round D T2题解

    题目大意:由N个房子围成一个环,G个人分别顺时针/逆时针在房子上走,一共走M分钟,每分钟结束,每个人顺/逆时针走到相邻的房子.对于每个房子都会记录最后时刻到达的人(可能是一群人).最终输出每个人会被几 ...

  3. Kick Start 2019 Round A Contention

    $\DeclareMathOperator*{\argmax}{arg\,max}$ 题目链接 题目大意 一排 $N$ 个座位,从左到右编号 $1$ 到 $N$ . 有 $Q$ 个预定座位的请求,第 ...

  4. Kick Start 2019 Round A Parcels

    题目大意 $R \times C$ 的网格,格子间的距离取曼哈顿距离.有些格子是邮局.现在可以把至多一个不是邮局的格子变成邮局,问每个格子到最近的邮局的曼哈顿距离的最大值最小是多少. 数据范围 $ 1 ...

  5. Kick Start 2019 Round B Energy Stones

    对我很有启发的一道题. 这道题的解法中最有思维难度的 observation 是 For simplicity, we will assume that we never eat a stone wi ...

  6. 【DP 好题】Kick Start 2019 Round C Catch Some

    题目链接 题目大意 在一条数轴上住着 $N$ 条狗和一个动物研究者 Bundle.Bundle 的坐标是 0,狗的坐标都是正整数,可能有多条狗住在同一个位置.每条狗都有一个颜色.Bundle 需要观测 ...

  7. Kick Start 2019 Round F Teach Me

    题目链接 题目大意 有 $N$ 个人,$S$ 项技能,这些技能用 $1, 2, 3, \dots, S$ 表示 .第 $i$ 个人会 $c_i$ 项技能($ 1 \le c_i \le 5 $).对于 ...

  8. Kick Start 2019 Round D

    X or What? 符号约定: $\xor$ 表示异或. popcount($x$) 表示非负整数 $x$ 的二进制表示里数字 1 出现的次数.例如,$13 = 1101_2$,则 popcount ...

  9. Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解

    Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解 题目地址:https://codingcompetitions.withgoogle.com/kickstar ...

随机推荐

  1. Cogs 729. [网络流24题] 圆桌聚餐

    [网络流24题] 圆桌聚餐 ★★ 输入文件:roundtable.in 输出文件:roundtable.out 评测插件 时间限制:1 s 内存限制:128 MB «问题描述: 假设有来自m 个不同单 ...

  2. JavaScript闭包应用场合——控制前端接口轮训

    很多人都知道JavaScript的闭包,也知道大致是一个什么意思,但是对于闭包的应用场合不是很清楚 最近在改造项目的过程之中修改前端接口轮训方式的时候用到了闭包驱动setTimeout来实现一个类似定 ...

  3. Python基础之深浅copy

    1. 赋值 lst1 = [1, 2, 3, ["a", "b", "c"]] lst2 = lst1 lst1[0] = 11 print ...

  4. AcWing:240. 食物链(扩展域并查集 or 带边权并查集)

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形. A吃B, B吃C,C吃A. 现有N个动物,以1-N编号. 每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用 ...

  5. Mybatis源码学习之parsing包(解析器)(二)

    简述 大家都知道mybatis中,无论是配置文件mybatis-config.xml,还是SQL语句,都是写在XML文件中的,那么mybatis是如何解析这些XML文件呢?这就是本文将要学习的就是,m ...

  6. 关于phoenix构建hbase视图,更新hbase表后,视图表是否更新的验证

    1:创建表 create 'MY_TABLE', 'CF1','CF2' 2:在hbase上插入一条数据 put ' ,'CF1:V1', 'uwo1' 3:在phoenix上创建视图 create ...

  7. nginx关于uri的变量

    在nginx中有几个关于uri的变量,包括$uri $request_uri $document_uri,下面看一下他们的区别 : $request_uri: /stat.php?id=1585378 ...

  8. 在CUDA8.0下指定位置编译安装OpenCV3.1.0来实现GPU加速(Compiling OpenCV3.1.0 with CUDA8.0 support)

    在CUDA8.0下指定位置编译安装OpenCV3.1.0 一.本人电脑配置:ubuntu 14.04, NVIDIA GTX1060. 二.编译OpenCV3.1.0前,读者需要成功安装CUDA8.0 ...

  9. Mybatis传递多个参数进行SQL查询的用法

    当只向xxxMapper.xml文件中传递一个参数时,可以简单的用“_parameter”来接收xxxMapper.java传递进来的参数,并代入查询. 但是,如果在xxxMapper.java文件中 ...

  10. LeetCode 112. 路径总和(Path Sum)

    题目描述 给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 sum ...