BZOJ 1006 完美消除序列&最大势算法&弦图
K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关系,是指N个人 A1A2...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,CD,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王想知道最少可以分多少支队。
子图:V'为V的子集 E'为E的子集
诱导子图:对于V' 只要在G中有边 那么在G'中同样应该有边
最大独立集:最大的一个点的子集使任何两个点不相邻——最大独立集数
最大团:点数最多的团——团数
最小染色:用最少的颜色给点染色使相邻点颜色不同——色数
最小团覆盖:用最少个数的团覆盖所有的点——最小团覆盖数
结论: 团数<=色数 最大独立集数<=最小团覆盖数
弦(Chord):连接环中不相邻的两个点的边

弦图:一个无向图称为弦图,当图中任意长度大于3的环都至少有一个弦
弦图的每一个诱导子图一定是弦图
弦图的判断:
ZJU1015
给定一个无向图,判定它是否为弦图
单纯点:设N(v)为与点v相邻的点的点集 一个点是单纯点当且仅当{v}+N(v)的诱导子图为一个团
引理:任何一个弦图都至少有一个单纯点 不是完全图的弦图至少有两个不相邻的单纯点
完美消除序列:
一个点的序列(每个点出现且恰好出现一次)V1,V2....Vn满足Vi在{Vi,Vi+1,Vn}的诱导子图中为一个单纯点
定理:一个无向图是弦图当且仅当它有一个完美消除序列
MCS算法O(n+m):
#include <cstdio>
#include <cstring>
#include <queue>
#include <cstdlib>
#define N 10000 + 10
#define M 2000000 + 10 using namespace std; struct edge
{
int to, next;
}e[M];
int n, m, num, ans, maxs;
int p[N], seq[N], col[N], lab[N], flag[N];
struct node
{
int now;
node *next;
}f[N];//链表
void add(int x, int y)
{
e[++num].to = y;
e[num].next = p[x];
p[x] = num;
}
void put(int x)
{
node *po = (struct node *)malloc(sizeof(struct node));
po->next = f[lab[x]].next;
po->now = x;
f[lab[x]].next = po;
}//链表的插入
void read(int &x)
{
x = ;
char c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
}
void init()
{
int x, y;
read(n), read(m);
for (int i = ; i <= m; ++i)
{
read(x), read(y);
if (x == y) continue;
add(x, y);
add(y, x);
}
}
void create()
{
for (int i = ; i <= n; ++i)
f[i].next = NULL;//
for (int i = ; i <= n; ++i) put(i);
maxs = ;//初始化
for (int i = n; i; i--)//用逆序求
{
node *po = f[maxs].next;//找到当前最大
while(flag[po->now])
{
f[maxs].next = po = po->next;//及时删除没有用的点(漏掉的话会超时)
while(po == NULL)
{
maxs--;
po = f[maxs].next;
}
}
f[maxs].next = po->next;//更新
while(f[maxs].next == NULL) maxs--;
int x = po->now;
flag[x] = , seq[i] = x;
for (int j = p[x]; j; j = e[j].next)
if (!flag[e[j].to])
{
++lab[e[j].to];//加势
if (lab[e[j].to] > maxs) maxs = lab[e[j].to];
put(e[j].to);
}
}
}
void paint()
{
for (int i = ; i <= n; ++i)
flag[i] = -;
for (int i = n; i; i--)
{
int x = seq[i];
for (int j = p[x]; j; j = e[j].next)
flag[col[e[j].to]] = i;
for (int j = ; j <= n; ++j)
if (flag[j] != i)
{
col[x] = j;
break;
}
if (ans < col[x]) ans = col[x];
}
}
void deal()
{
create();
paint();
printf("%d\n", ans);
}
int main()
{
//freopen("kingdom.in", "r", stdin);
//freopen("kingdom.out", "w", stdout);
init();
deal();
return ;
}
BZOJ 1006
BZOJ 1006 完美消除序列&最大势算法&弦图的更多相关文章
- bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法
[HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4370 Solved: 2041[Submit][Status][D ...
- 无向图的完美消除序列 判断弦图 ZOJ 1015 Fish net
ZOJ1015 题意简述:给定一个无向图,判断是否存在一个长度大于3的环路,且其上没有弦(连接环上不同两点的边且不在环上). 命题等价于该图是否存在完美消除序列. 所谓完美消除序列:在 vi,v ...
- bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1788 Solved: 775[Submit][Stat ...
- BZOJ 1006 [HNOI2008] 神奇的国度(简单弦图的染色)
题目大意 K 国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即 AB 相互认识,BC 相互认识,CA 相互认识,是简洁高效的.为了巩固三角关系,K 国禁止四边关系,五边关系等 ...
- bzoj 4540 [HNOI 2016] 序列 - 莫队算法 - Sparse-Table - 单调栈
题目传送门 传送点I 传送点II 题目大意 给定一个长度为$n$的序列.询问区间$[l, r]$的所有不同的子序列的最小值的和. 这里的子序列是连续的.两个子序列不同当且仅当它们的左端点或右端点不同. ...
- ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net
●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...
- [BZOJ 1006] [HNOI2008] 神奇的国度 【弦图最小染色】
题目链接: BZOJ - 1006 题目分析 这道题是一个弦图最小染色数的裸的模型. 弦图的最小染色求法,先求出弦图的完美消除序列(MCS算法),再按照完美消除序列,从后向前倒着,给每个点染能染的最小 ...
- 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题
1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...
- BZOJ 1006 [HNOI2008]神奇的国度==最大势算法
神奇的国度 K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在. ...
随机推荐
- 【CSS】如何在一个页面中引入样式css
CSS(Cascading Style Sheet)又叫层叠样式表.是我们学习前端必不可少的一门语言,学习它其实就是为了学会如何去更改页面标签的样式.目前使用最广的是css3,但同样的,他是从css2 ...
- 架构模式: 客户端 UI 构建
架构模式: 客户端 UI 构建 上下文 您已应用微服务架构模式.服务由业务能力/面向子域的团队开发,这些团队也负责用户体验.一些UI屏幕/页面显示来自多个服务的数据.例如,考虑亚马逊风格的产品详细信息 ...
- 安装与编译Dlib(以Ubuntu16.04+Python3.6+pip为例)
安装与编译Dlib(以Ubuntu16.04+Python3.6+pip为例) Step1:下载Ubuntu (or Linux)系统支持库=>Install OS libraries -dev ...
- 【ARM-Linux开发】Linux的SOCKET编程详解
Linux的SOCKET编程详解 1. 网络中进程之间如何通信 进 程通信的概念最初来源于单机系统.由于每个进程都在自己的地址范围内运行,为保证两个相互通信的进 程之间既互不干扰又协调一致工作,操作系 ...
- OpenResty + Lua + Kafka 实现日志收集系统以及部署过程中遇到的坑
********************* 部署过程 ************************** 一:场景描述 对于线上大流量服务或者需要上报日志的nginx服务,每天会产生大量的日志,这些 ...
- cm api
cm API:https://github.com/cloudera/cm_api/tree/master/python/examples/auto-deploy#看集群有几个clustercurl ...
- Docker 运行 MYSQL 数据库的总结
公司里面要求做一个小demo 学习java相关的东西 然后使用了mysql数据库 很早之前做过mysql的容器化运行. 现在想想已经忘记的差不多了 所以这里总结一下 docker化运行mysql数据 ...
- 【详细解析】MySQL索引详解( 索引概念、6大索引类型、key 和 index 的区别、其他索引方式)
[详细解析]MySQL索引详解( 索引概念.6大索引类型.key 和 index 的区别.其他索引方式) MySQL索引的概念: 索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分 ...
- go 表单
package main import ( "fmt" "io" "net/http" ) const form = `<html&g ...
- 怎样修改输入框 placehoder 提示文本的颜色?
1. 在这个问题上, 不同浏览器的设置方法有所差异, 可以写成下面这种形式. ::-webkit-input-placeholder { /* WebKit browsers */ color: #9 ...