K nearest neighbor cs229
vectorized code 带来的好处。
import numpy as np
from sklearn.datasets import fetch_mldata
import time
import matplotlib.pyplot as plt mnist = fetch_mldata('MNIST original') X = mnist.data.astype(float)
Y = mnist.target.astype(float) mask = np.random.permutation(range(np.shape(X)[0])) num_train = 10000
num_test = 500
K = 10 X_train = X[mask[:num_train]]
Y_train = Y[mask[:num_train]] X_mean = np.mean(X_train,axis = 0) X_train = (X_train-X_mean)/255 X_test = X[mask[num_train:num_train+num_test]] X_test = (X_test - X_mean)/255 Y_test = Y[mask[num_train:num_train+num_test]] print('X_train',X_train.shape)
print('Y_train',Y_train.shape)
print('X_test',X_test.shape)
print('Y_test',Y_test.shape) ex_image = (np.reshape(X_train[10,:]*255 + X_mean, (28, 28))).astype(np.uint8)
plt.imshow(ex_image, interpolation='nearest') # **Computing the distance matrix (num_test x num_train)** # Version 1 (Naive implementation using two for loops) start = time.time()
dists_1 = np.zeros((num_test,num_train))
for i in xrange(num_test):
for j in xrange(num_train):
dists_1[i,j] = np.sqrt(np.square(np.sum(X_test[i,:]-X_train[j,:]))) stop = time.time()
time_taken = stop-start
print('Time taken with two for loops: {}s'.format(time_taken)) # Version 2(Somewhat better implementation using one for loop) start = time.time()
dists_2 = np.zeros((num_test,num_train))
for i in xrange(num_test):
dists_2[i,:] = np.sqrt(np.square(np.sum(X_test[i,:]-X_train,axis = 1))) stop = time.time()
time_taken = stop-start
print('Time taken with just one for loop: {}s'.format(time_taken)) # Version 3 (Fully vectorized implementation with no for loop) start = time.time()
dists_3 = np.zeros((num_test,num_train))
A = np.sum(np.square(X_test),axis = 1)
B = np.sum(np.square(X_train),axis = 1)
C = np.dot(X_test,X_train.T) dists_3 = np.sqrt(A[:,np.newaxis]+B[np.newaxis,:]-2*C) stop = time.time()
time_taken = stop-start
print('Time taken with no for loops: {}s'.format(time_taken)) sorted_dist_indices = np.argsort(dists_3,axis = 1) closest_k = Y_train[sorted_dist_indices][:,:K].astype(int)
Y_pred = np.zeros_like(Y_test) for i in xrange(num_test):
Y_pred[i] = np.argmax(np.bincount(closest_k[i,:])) accuracy = (np.where(Y_test-Y_pred == 0)[0].size)/float(num_test)
print('Prediction accuracy: {}%'.format(accuracy*100))
K nearest neighbor cs229的更多相关文章
- K Nearest Neighbor 算法
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...
- K NEAREST NEIGHBOR 算法(knn)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...
- K-Means和K Nearest Neighbor
来自酷壳: http://coolshell.cn/articles/7779.html http://coolshell.cn/articles/8052.html
- Nearest neighbor graph | 近邻图
最近在开发一套自己的单细胞分析方法,所以copy paste事业有所停顿. 实例: R eNetIt v0.1-1 data(ralu.site) # Saturated spatial graph ...
- 【cs231n】图像分类-Nearest Neighbor Classifier(最近邻分类器)【python3实现】
[学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8735908.html 图像分类: 一张图像的表示:长度.宽度.通道(3个颜色通道 ...
- [机器学习系列] k-近邻算法(K–nearest neighbors)
C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...
- Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...
- Nearest Neighbor Search
## Nearest Neighbor Search ## Input file: standard input Output file: standard output Time limit: 1 ...
- K近邻(K Nearest Neighbor-KNN)原理讲解及实现
算法原理 K最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样本 ...
随机推荐
- gitbook组织管理书写
1.git 强大的版本管理工作,也适合对书写内容的更新管理. 2.markdown git管理文本,所以书写要从docx格式转变成markdown. 而typora是一个比较好用markdown书写工 ...
- centos7 httpd配置
centos7 httpd配置 标签(空格分隔): 未分类 隐藏server信息 修改httpd.conf 设置,添加如下两行 ServerSignature Off ServerTokens Pro ...
- ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】
题目链接:https://www.jisuanke.com/contest/2870?view=challenges 题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m ...
- Anaconda Spyder 常用快捷键
Ctrl+1 注释.取消注释 Ctrl+4/5 块注释 / 取消块注释 Ctrl+D 删除一行 Ctrl+L 转到行 Ctrl+G/左键 查找函数定义 F9 运行选中代码 F12 断点 / 取消断点 ...
- PostgreSQL 循环导出schema的脚本
需要备份的schema列表 $ cat need_backup_schema.txt pipeline_na_16q3_v4 pipeline_na_16q4_v8 pipeline_na_16q4_ ...
- MySQL线程池(THREAD POOL)的原理
MySQL常用(目前线上使用)的线程调度方式是one-thread-per-connection(每连接一个线程),server为每一个连接创建一个线程来服务,连接断开后,这个线程进入thread_c ...
- 【LOJ】#3030. 「JOISC 2019 Day1」考试
LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...
- JSP与Servlet之间的交互,传值
一.Servlet 首先要明白一点,servlet需要容器的支持才能够运行,如Tomcat.jetty 达到servlet的请求,需要ServletRequest对象和ServletResponse对 ...
- Postgresql在Windows下的解压安装
1.将下载的压缩包解压,我是解压在D:\postgreSQL\pgsql中. 2.设置环境变量如下: set PGHOME=D:\postgreSQL\pgsql set PGDATA=%PGH ...
- codeforce C. Success Rate
写完这道题目才发现自己对二分的理解太浅了 这题是典型的利用二分“假定一个问题可行并求最优解” 二分是通过不断缩小区间来缩小解的范围,最终得出解的算法 我们定义一个c(x) 表示判断函数 如果对任意y& ...