题目描述

很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点。这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花。樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点,则son(i) = 0

现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。
现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。
注意根节点不能被删除,被删除的节点不被计入载重。

输入

第一行输入两个正整数,n和m分别表示节点个数和最大载重

第二行n个整数c_i,表示第i个节点上的樱花个数

接下来n行,每行第一个数k_i表示这个节点的儿子个数,接下来k_i个整数表示这个节点儿子的编号

输出

一行一个整数,表示最多能删除多少节点。

样例输入

10 4
0 2 2 2 4 1 0 4 1 1
3 6 2 3
1 9
1 8
1 1
0
0
2 7 4
0
1 5
0

样例输出

4

提示

对于100%的数据,1 <= n <= 2000000, 1 <= m <= 100000, 0 <= c_i <= 1000

数据保证初始时,每个节点樱花数与儿子节点个数之和大于0且不超过m


题解

树形dp+贪心

每次删除选定节点后,增加的重量为(选定节点的子节点数目+选定节点的樱花数)-1,

那么我们完全可以讲每个节点的重量看作子节点数目+樱花数。

于是就有贪心策略:优先选择重量小的子节点删除,否则若选择其它子节点,那么这个节点删掉的子节点不会增多,而且这个节点的重量会比贪心方案大,影响后面的处理。

先更新子节点的重量,并从小到大排序,根据贪心策略优先选择重量小的,判断能否去掉,若能去掉则更新当前节点的重量。

时间复杂度为O(nlogn),但常数较小,可以过。

#include <stdio.h>
#include <algorithm>
#include <vector>
using namespace std;
vector<int> son[2000001];
int c[2000001] , m , ans;
bool cmp(int a , int b)
{
return c[a] < c[b];
}
void dp(int x)
{
int i;
for(i = 0 ; i < (int)son[x].size() ; i ++ )
dp(son[x][i]);
sort(son[x].begin() , son[x].end() , cmp);
c[x] += son[x].size();
for(i = 0 ; i < (int)son[x].size() ; i ++ )
{
if(c[x] + c[son[x][i]] - 1 <= m)
{
c[x] += c[son[x][i]] - 1;
ans ++ ;
}
else
break;
}
}
int main()
{
int n , i , k , x;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &c[i]);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &k);
while(k -- )
{
scanf("%d" , &x);
son[i].push_back(x + 1);
}
}
dp(1);
printf("%d\n" , ans);
return 0;
}

【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心的更多相关文章

  1. [BZOJ4027][HEOI2015]兔子与樱花 树形dp

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  2. [bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  3. BZOJ4027/LG4107 「HEOI2015」兔子与樱花 树形DP+贪心

    问题描述 LG4107 题解 首先,我们可以直接令结点 \(x\) 的权值为 \(c[x]+son_x\) ,发现将 \(x,y\) 合并,相当于增加 \(c[x]+c[y]-1\) 的重量. 容易想 ...

  4. bzoj4027 [HEOI2015]兔子与樱花 树上贪心

    [HEOI2015]兔子与樱花 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1320  Solved: 762[Submit][Status][Di ...

  5. BZOJ4027: [HEOI2015]兔子与樱花 贪心

    觉得是贪心,但是一开始不太肯定...然后就A了 一个点对它的父亲的贡献就是自己的权值加儿子的个数 #include<bits/stdc++.h> using namespace std; ...

  6. BZOJ 4027: [HEOI2015]兔子与樱花 树上dp

    4027: [HEOI2015]兔子与樱花 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  7. [bzoj4027][HEOI2015]兔子与樱花_贪心_树形dp

    兔子与樱花 bzoj-4027 HEOI-2015 题目大意:每个点有c[i]朵樱花,有一个称重m, son[i]+c[i]<=m.如果删除一个节点,这个节点的樱花或移动到它的祖先中深度最大的, ...

  8. [BZOJ4027][HEOI2015] 兔子与樱花

    Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接 ...

  9. BZOJ4027 HEOI2015兔子与樱花(贪心)

    首先显然地如果某个点超过了最大负载,删掉它仍然是不合法的.删除某个点当前只会对其父亲产生影响,同一个节点的儿子显然应该按代价从小到大删.考虑如果删掉某个点之后他的父亲不能再删了,我们损失了父亲这个点, ...

随机推荐

  1. Java——基于java自身包实现消息系统间的通信(TCP/IP+NIO)

    /** * Created by LiuHuiChao on 2016/11/15. * description:based on TCP/IP+NIO to deliver the message ...

  2. day 9 名字管理系统

    1 while True ##### 布尔值:True or False In [8]: a = 19 In [6]: a > 18 Out[6]: True In [7]: a < 18 ...

  3. Linux日志切割logrotate服务配置

    一.logrotate介绍 logrotate软件是一个日志管理工具,用于非分隔日志,删除旧的日志文件,并创建新的日志文件,起到“转储作用”,可以为系统节省磁盘空间.一般centos系统已经自带安装好 ...

  4. 润乾报表整合到Tomcat服务器的部署过程

    转载自:http://www.cnblogs.com/avivaye/archive/2012/11/16/2773681.html 使用第三方的报表设计器/服务器来快速的开发报表. 润乾服务器是使用 ...

  5. 原生与JS交互 iOS

      前言 Hybrid App(混合模式移动应用)是指介于web-app.native-app这两者之间的app,兼具“Native App良好用户交互体验的优势”和“Web App跨平台开发的优势” ...

  6. 001 -js对时间日期的排序

    001-JS对时间日期的排序 最近在做公司的项目时间,产品给了一个很简单的页面,让帮忙写一下.首先看一下产品的需求: 需要对该列表进行排序 思路:(1)可以在数据库写sql语句的时间直接一个DESC按 ...

  7. 从武侠中的兵器看待数据访问工具——Hibernate Spring.Data Mybatis

    <泪痕剑>第31集,卓爷大谈自己的兵器,我从中摘录,觉得非常受用. “你错了,我们和武器之间的关系,就好像选择情人一样,不管是否擅长,都要用感情. 我少年时候用刀,青年时候仍用刀,不知道用 ...

  8. JAVA学习笔记--字符串概述

    一.String类 String类代表字符串,是由字符构成的一个序列.创建String对象的方法很简单,有以下几种: 1)用new来创建: String s1 = new String("m ...

  9. Altera FPGA AS,PS,Jtag配置模式区别

    Altera FPGA  AS,PS,Jtag配置模式区别 FPGA器件有三类配置下载方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式. AS模式(active seri ...

  10. 【Pthon入门学习】利用slice实现str的strip函数,类似C#中的string.trim

    1.先了解下切片的知识点 切片是str, list,tuple中常用的取部分元素的操作. 例如: L =['北京', '上海', '天津', '深圳', '石家庄'] print(L[0:2]) # ...