安装caffe(opencv3+anaconda3)
仅安装CPU版本的caffe
1.下载相关的依赖包:
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install git cmake build-essential
2.安装opencv3
进入官网 : http://opencv.org/releases.html , 选择 3.4.1 版本的 source,并下载,解压到你要安装的位置.如/home/whb/Documents/PC/opencv/opencv-3.4.4,进入该目录。
#创建build文件
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j8 #编译
make install #安装
如以上步骤不出错,通过以下命令检查opencv是否安装成功
opencv_version
3.安装caffe
3.1 下载caffe
git clone https://github.com/BVLC/caffe.git
进入caffe目录
3.2 修改Makefile.config文件
cp Makefile.config.example Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1 ##关键1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3 ##关键2
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda3 ##关键3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ ##关键4
$(ANACONDA_HOME)/include/python3.6m \
$(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.6m ###关键5
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
USE_PKG_CONFIG := 1 ##关键6
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
共需要修改6个地方,仅安装cpu,配置anaconda3的相关路径,使用opencv3,取消注释USE_PKG_CONFIG=1这一行.
3.3 编译caffe
make all -j8
make test -j8
make runtest -j8
出现,PASSED表示大功告成
3.4 编译pycaffe
修改Makefile文件
PYTHON_LIBRARIES ?= boost_python3 python3.6
重新编译caffe
make clean
make caffe -j8
make test -j8
make runtest -j8
make pycaffe -j8
3.5 测试import caffe
为了使得import caffe成功,需要完成以下2个步骤:
1.将caffe的python路径加入到环境变量中
找到安装caffe的根目录,我这里是home/whb/Documents/PC/caffe,打开bashrc文件
vim /.bashrc
#加入
export PYTHONPATH=/home/whb/Documents/PC/caffe/python:$PYTHONPATH
#生效
source ~/.bashrc
2.安装protobuf
pip install protobuf
大功告成0.0
参考文献:
- https://blog.csdn.net/yhaolpz/article/details/71375762
- https://blog.csdn.net/muzilinxi90/article/details/53673184
- https://blog.csdn.net/yhaolpz/article/details/71375762
安装caffe(opencv3+anaconda3)的更多相关文章
- anaconda3安装caffe
使用anaconda3安装caffe踩坑无数次,放弃治疗,直接在~/.bashrc中删除anaconda的路径,备份一下等要用的时候再写上,用默认的python2.7系统环境安装 要使用人脸检测项目中 ...
- utuntu16.04安装caffe+Matlab2017a+opencv3.1+CUDA8.0+cudnn6.0
上午把tensorflow安装好了,下午和晚上装caffe的确很费劲. 默认CUDA,cuDNN可以用了 caffe官方安装教程 有些安装顺序自己也不清楚,简直就是碰运气 1. 安装之前依赖项 Gen ...
- CAFFE(0):Ubuntu 下安装anaconda2和anaconda3
这个步骤可以看做是安装caffe可以进行或者不必要的步骤,不过笔者建议安装anaconda2和anaconda3,里面会包含很多的模块,省去caffe学习过程中出现模块不存在的各种错误. 第一步.进入 ...
- Ubuntu Anaconda3 环境下安装caffe
安装Python环境 本人环境为Anaconda3 ,可参照 https://blog.csdn.net/ctwy291314/article/details/86571198 完成安装Python2 ...
- Ubuntu18.04安装caffe python3.6 opencv3.2 CPU
设置ubuntu的softwares&updates的源为国内源,这样会提高下载速度. 如果是安装python相关库,为提高速度使用: pip3 install 要下载的库 -i https: ...
- Ubuntu16.04+Tensorlow+caffe+opencv3.1+theano部署
1.首先安装Ubuntu16.04系统. 2.安装显卡驱动 在官网上下载最新的NVIDIA-Linux-x86_64-375.26.run驱动.然后 Ctrl+Alt+F1进入控制台,输入 sudo ...
- Ubuntu 14.04上安装caffe
本来实在windows 10上尝试安装caffe,装了一天没装上,放弃; 改在windows上装ubuntu的双系统,装了一个下午,不小心windows的系统盘被锁死了,也不会unlock?只好含泪卸 ...
- caffe+opencv3.3dnn模块 完成手写数字图片识别
最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...
- 安装Caffe纪实
第一章 引言 在ubuntu16.04安装caffe,几乎折腾了一个月终于成功;做一文章做纪要,以便日后查阅.总体得出的要点是:首先,每操作一步,必须知道如何检验操作的正确性;笔者的多次失误是因为配置 ...
随机推荐
- Centos7 创建Eclipse启动
Eclipse是一个集成开发环境(IDE),包含一个基工作区和定制环境的可扩展插件系统.大部分使用 Java 编写,Eclipse 可以用来开发应用程序.通过各种插件,Eclipse 也可以用于其他编 ...
- 修改chrome插件
背景 例子为:ModHeader插件,顾名思义可以修改request header的插件,官方地址为:https://chrome.google.com/webstore/detail/modhead ...
- .net后台转json数据
List<PostInfo> list = new List<PostInfo>();PostInfo postinfo = new PostInfo();list.Add(p ...
- SQL Server数据库的基础脚本编程
数据库脚本的基础编程 Go批量处理语句 用于同时处理多条语句 use指定数据库或表 use master --创建数据库 go use Student --创建表(Student)表示数据库 go 创 ...
- WPF:MVVM模式下ViewModel关闭View
不外乎两种基本方法. 消息通知和参数传递. 一.消息通知 利用View里的IsEnable属性 原理是这样的: 1.UI中的IsEnabled绑定VM中的属性 2.UI的后台代码中,注册IsEnabl ...
- 虚拟化 - Hyper-V
不能和VMware.VirtualBox同时使用 网络 交换机其实就是指网卡,只不过是虚拟的 内部交换机 外部交换机
- C#多线程编程系列(一)- 简介
目录 系列大纲 一.前言 二.目录结构 四.章节结构 五.相关链接 系列大纲 目前只整理到第二章,线程同步,笔者后面会慢慢更新,争取能把这本书中精华的知识都分享出来. C#多线程编程系列(一)- 简介 ...
- 批判“await使用中的阻塞和并发”——对asyc/await这对基友的误会和更正
写第一篇<await使用中的阻塞和并发>的时候还自信满满,觉得写的真不错,结果漏洞百出…… 更正第二篇<await使用中的阻塞和并发(二)>的时候觉得这回不会再错了…… 结果我 ...
- ajax1—php(27)
一 简介 web程序工作原理图: 传统的web程序工作原理图: Ajax工作原理图: 1. 关于Ajax l Asynchronous 异步 l JavaScript l And l XML ...
- [php审计实战篇]BlueCms v1.6 Union注入
非常基础的代码审计练习,适合有php基础的审计新手练习 本文作者:Aedoo 来源:i春秋社区 0×01 代码跟踪 首先,进入首页代码 :index.php 包含了php文件:/include/com ...