仅安装CPU版本的caffe

1.下载相关的依赖包:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

sudo apt-get install git cmake build-essential

2.安装opencv3

进入官网 : http://opencv.org/releases.html , 选择 3.4.1 版本的 source,并下载,解压到你要安装的位置.如/home/whb/Documents/PC/opencv/opencv-3.4.4,进入该目录。

#创建build文件
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j8 #编译
make install #安装

如以上步骤不出错,通过以下命令检查opencv是否安装成功

opencv_version

3.安装caffe

3.1 下载caffe

git clone https://github.com/BVLC/caffe.git

进入caffe目录

3.2 修改Makefile.config文件

cp Makefile.config.example Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1 ##关键1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3 ##关键2 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda3 ##关键3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ ##关键4
$(ANACONDA_HOME)/include/python3.6m \
$(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.6m ###关键5
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
USE_PKG_CONFIG := 1 ##关键6 # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0 # enable pretty build (comment to see full commands)
Q ?= @

共需要修改6个地方,仅安装cpu,配置anaconda3的相关路径,使用opencv3,取消注释USE_PKG_CONFIG=1这一行.

3.3 编译caffe

make all -j8
make test -j8
make runtest -j8



出现,PASSED表示大功告成

3.4 编译pycaffe

修改Makefile文件
PYTHON_LIBRARIES ?= boost_python3 python3.6
重新编译caffe
make clean
make caffe -j8
make test -j8
make runtest -j8
make pycaffe -j8

3.5 测试import caffe

为了使得import caffe成功,需要完成以下2个步骤:

1.将caffe的python路径加入到环境变量中

找到安装caffe的根目录,我这里是home/whb/Documents/PC/caffe,打开bashrc文件

vim /.bashrc 
#加入
export PYTHONPATH=/home/whb/Documents/PC/caffe/python:$PYTHONPATH
#生效
source ~/.bashrc

2.安装protobuf

 pip install protobuf

大功告成0.0

参考文献:

  1. https://blog.csdn.net/yhaolpz/article/details/71375762
  2. https://blog.csdn.net/muzilinxi90/article/details/53673184
  3. https://blog.csdn.net/yhaolpz/article/details/71375762

安装caffe(opencv3+anaconda3)的更多相关文章

  1. anaconda3安装caffe

    使用anaconda3安装caffe踩坑无数次,放弃治疗,直接在~/.bashrc中删除anaconda的路径,备份一下等要用的时候再写上,用默认的python2.7系统环境安装 要使用人脸检测项目中 ...

  2. utuntu16.04安装caffe+Matlab2017a+opencv3.1+CUDA8.0+cudnn6.0

    上午把tensorflow安装好了,下午和晚上装caffe的确很费劲. 默认CUDA,cuDNN可以用了 caffe官方安装教程 有些安装顺序自己也不清楚,简直就是碰运气 1. 安装之前依赖项 Gen ...

  3. CAFFE(0):Ubuntu 下安装anaconda2和anaconda3

    这个步骤可以看做是安装caffe可以进行或者不必要的步骤,不过笔者建议安装anaconda2和anaconda3,里面会包含很多的模块,省去caffe学习过程中出现模块不存在的各种错误. 第一步.进入 ...

  4. Ubuntu Anaconda3 环境下安装caffe

    安装Python环境 本人环境为Anaconda3 ,可参照 https://blog.csdn.net/ctwy291314/article/details/86571198 完成安装Python2 ...

  5. Ubuntu18.04安装caffe python3.6 opencv3.2 CPU

    设置ubuntu的softwares&updates的源为国内源,这样会提高下载速度. 如果是安装python相关库,为提高速度使用: pip3 install 要下载的库 -i https: ...

  6. Ubuntu16.04+Tensorlow+caffe+opencv3.1+theano部署

    1.首先安装Ubuntu16.04系统. 2.安装显卡驱动 在官网上下载最新的NVIDIA-Linux-x86_64-375.26.run驱动.然后 Ctrl+Alt+F1进入控制台,输入 sudo ...

  7. Ubuntu 14.04上安装caffe

    本来实在windows 10上尝试安装caffe,装了一天没装上,放弃; 改在windows上装ubuntu的双系统,装了一个下午,不小心windows的系统盘被锁死了,也不会unlock?只好含泪卸 ...

  8. caffe+opencv3.3dnn模块 完成手写数字图片识别

    最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...

  9. 安装Caffe纪实

    第一章 引言 在ubuntu16.04安装caffe,几乎折腾了一个月终于成功;做一文章做纪要,以便日后查阅.总体得出的要点是:首先,每操作一步,必须知道如何检验操作的正确性;笔者的多次失误是因为配置 ...

随机推荐

  1. asp.net mvc 上传图片 摘自mvc 高级编程第311页

    Image Uploads I am going to complete the SportsStore user experience with something a little more so ...

  2. C#基础笔记(第二十二天)

    1.单例模式1)将构造函数私有化2)提供一个静态方法,返回一个对象3)创建一个单例 2.XML可扩展的标记语言 HTMLXML:存储数据 不是单独.net的东西,是一个单独的,JAVA什么的都也用不需 ...

  3. 【总结】 NOIp2018考时经历记

    可能我因为比较菜的原因,还是要写一下这个东西! 发布时间迟与更新时间,毕竟浙江选手为先例 那么希望NOIp8102RP++!!! 突然发现博客园支持更新创作时间了,那么就不咕了! 本次NOIp感受很深 ...

  4. python网络编程--socketserver 和 ftp功能简单说明

    1. socketserver 我们之前写的tcp协议的socket是不是一次只能和一个客户端通信,如果用socketserver可以实现和多个客户端通信.它是在socket的基础上进行了一层封装,也 ...

  5. AGC007C Pushing Balls

    题目链接 题意:\(N\)个坑,\(N+1\)个球,相间分布,距离为以\(d_1\)为首项,\(x\)为公差的等差数列.对于每次操作,随机选择一个未入坑的球,随机选择向左或向右,掉入第一个没有球的坑, ...

  6. MySql数据库备份的几种方式

    mysqldump工具备份 备份整个数据库 $> mysqldump -u root -h host -p dbname > backdb.sql 备份数据库中的某个表 $> mys ...

  7. ionic 项目 随笔

    1,首先 会进入src/index.html, <!-- The polyfills js is generated during the build process --> <sc ...

  8. jquery源码解析:jQuery数据缓存机制详解2

    上一课主要讲了jQuery中的缓存机制Data构造方法的源码解析,这一课主要讲jQuery是如何利用Data对象实现有关缓存机制的静态方法和实例方法的.我们接下来,来看这几个静态方法和实例方法的源码解 ...

  9. Linux(Ubuntu)配置问题集

    Cannot set LC_CTYPE to default locale: No such file or directory 安装Ubuntu Server版本(不带桌面环境)时,如果安装时的语言 ...

  10. linux中文件句柄数问题

        问题描述:  有时候业务比较繁忙时,就会出现如下问题 too many open files:顾名思义即打开过多文件数.不过这里的files不单是文件的意思,也包括打开的通讯链接(比如sock ...