ASP.NET Web API, as we know now, is a framework that helps build Services over HTTP. Web API was introduced as a lightweight service framework keeping in mind the modern web development paradigm where multiple devices and client platforms access data via an API that’s made available over plain HTTP without the configuration overhead of WS-* type of Services. It does not impose client-side object proxy requirements and supports JSON and XML formats out-of-the-box  for data transfer over the wire.

Today, we will look at the Lifecycle of an ASP.NET Web API message as it travels from the server to the client via the HttpRequest and back via the HttpResponse. We will also look at the various extensibility points in the pipeline. Once again thanks to Web API expert Sumit Maitra for all his valuable inputs.

The original flow chart was created by Microsoft and can be downloaded from here. The illustrations below are inspired by this original diagram.

The Web API Pipeline

The following image shows the major portions of the Web API Pipeline.

Hosting Web API

As we can see, Web API can be hosted either on ASP.NET or you could write a Console App or a Windows Service yourself to self-host it in a container of yours. So Web API’s flexibility starts right at the core as to where it can be hosted. This really opens things up for us as we go ahead.

a. ASP.NET Hosting: When hosted on ASP.NET, the lifecycle starts with the HttpControllerHandler which is an implementation of IHttpAsyncHandler and is responsible for passing requests into the HttpServer pipeline.

b. Self Hosting: When you are Self Hosting, the HttpServer pipeline starts at the HttpSelfHostServer which is an implementation of HttpServer and directly listens to HTTP requests.

HTTP Message Handlers

Once a request leaves your Service host, it travels as an HttpRequestMessage object in the pipeline. The next stage in the pipeline are the Message Handlers.

Delegating Handler

Delegating handlers are an extensibility point in the message pipeline allowing you to massage the Request before passing it on to the rest of the pipeline. The response message on its way back has to pass through the Delegating Handler as well, so any response can also be monitored/filtered/updated at this extensibility point.

Delegating Handlers if required, can bypass the rest of the pipeline too and send back and Http Response themselves.

Routing Dispatcher

If the request makes it through the option Delegation handlers, it reaches the Routing Dispatcher next. The dispatcher checks if the Route Handler is null. If it is null, it proceeds to the next step in the pipeline.

However if it’s not null, it implies there are one or more per-route message handlers in place and the request is passed on to the Handlers. Here it loops through the available handlers and picks the one matching the request, the request is then handled. Remember, you can have a delegation handler in your Route Handler, so you can bypass the rest of the pipeline even at this point.

Controllers

If the routing handlers pass the request on to the next stage, the request enters the Controllers.

Authorization Filters

First step in the Controllers section of the pipeline is to check for and pass through the Authorization Filters. If there are Authorization Filters present and the request fails Authorization, the Auth filter truncates the request and sends back an Auth Failure response directly.

Model Binding

Once authorized successfully, the request proceeds into the Model Binding section. This is not a single step. In fact if we ‘Zoom in’ to the Model Binding ‘box’, we will see a process similar to the one below

A Zoomed in view of Model Binding

As we can see above, we start off with the three parts of HTTP Request, the URL, Header and Body. Each one is treated independently.

URI Binding

The URI goes through the ModelBinderParameterBinding object which checks further if there is custom IModelBinder or IValueProvider. The final outcome is a Simple Type.

Formatter Binding

The Entity Body is managed through the FormatterParameterBinding. We can plug in custom Media Type Formatters and if the request needs one of these two be utilized it is piped through the appropriate Media Type Formatter before it gets converted to the required Complext Type.

Http Parameter Binding

If we have a custom HttpParameter binding module the entire request is piped through it instead and the final output could be any type spit out by the custom Http Parameter Binder.

Action Filters

After Model Binding is complete, the pipeline proceeds to the Action Filters. Action filters are actually invoked twice, before and after the controller Action as shown by the ‘OnExecuting’ and ‘OnExecuted’ events.

Action Invoker

The Action Invoker invokes the Controller Action using the binding and model state in the HttpActionContext. There is an extensibility point here also (not shown in the diagram). We can have a custom Implementation of IHttpActionInvoker if required.

The Action Invoker finally invokes the Controller action and the return journey of the Message in form of HttpResponseMessage begins from here. In case there is an exception while invoking the Action, the exception is routed to the Exception Filters which can send back appropriate Error Response.

Controller Action

The controller action executes the code in the Action method and returns from the Action Method. Depending on what it returns, the Result Conversion piece kicks in and prepares the HttpResponseMessage.

Result Conversion

We have the following ‘Zoomed in’ view of how the Response Message is prepared.

A Zoomed In view of Result Conversion into HttpResponseMessage

The outcome of the Action method can be of three types

a. An HttpResponseMessage – In this case, there is nothing to convert and the message is directly passed through and is on its way back in the pipeline.

b. A void – If the outcome of the Action Method is a void, it is actually converted into an HttpResponseMessage with status 204 implying – No Content.

c. If any other Types are returned by the Action method, Content Negotiation and Media Type Formatters kick in. The content negotiator checks to see if we can return the requested content, picks up the appropriate Media Type Formatter, churns the return data through it, to get an appropriate HttpResponseMessage out. As we can see, both the Content Negotiator and the MediaTypeFormatter are green, implying they are extensibility points and that they can be plugged in with custom implementations.

Once we have the required HttpResponseMessage, it begins its journey back through the components of the pipeline it traversed originally.

Wrap Up

That wraps up our trip down an Http Message’s lifecycle through the ASP.NET Web API pipeline. As we saw it is a very flexible pipeline with all major components being extensible as an additional plugin or in form of a custom replacement.

Hopefully this has given you a fair idea of how a Web API works and you can now write your code to maximize its potential.

Lifecycle of an ASP.NET Web API Message的更多相关文章

  1. ASP.NET WEB API处理流程

    前言:大图请看 http://www.asp.net/posters/web-api/ASP.NET-Web-API-Poster.pdf Web Api Hosting 我们不仅可以通过Web应用程 ...

  2. Custom Exception in ASP.NET Web API 2 with Custom HttpResponse Message

    A benefit of using ASP.NET Web API is that it can be consumed by any client with the capability of m ...

  3. ASP.NET Web API与Owin OAuth:使用Access Toke调用受保护的API

    在前一篇博文中,我们使用OAuth的Client Credential Grant授权方式,在服务端通过CNBlogsAuthorizationServerProvider(Authorization ...

  4. 8 种提升 ASP.NET Web API 性能的方法

    ASP.NET Web API 是非常棒的技术.编写 Web API 十分容易,以致于很多开发者没有在应用程序结构设计上花时间来获得很好的执行性能. 在本文中,我将介绍8项提高 ASP.NET Web ...

  5. 推荐升级ASP.NET Web API 2

    ASP.NET Web API 使用很长时间了,期间也碰到不少问题,升级到WebAPI2后这些问题都解决了,稳定性方面也提升不少,所以推荐使用.碰到的问题是下面的2类: 1.multipart/for ...

  6. Self Host模式下的ASP. NET Web API是如何进行请求的监听与处理的?

    构成ASP.NET Web API核心框架的消息处理管道既不关心请求消息来源于何处,也不需要考虑响应消息归于何方.当我们采用Web Host模式将一个ASP.NET应用作为目标Web API的宿主时, ...

  7. ASP.NET Web API中的Controller

    虽然通过Visual Studio向导在ASP.NET Web API项目中创建的 Controller类型默认派生与抽象类型ApiController,但是ASP.NET Web API框架本身只要 ...

  8. 总体介绍ASP.NET Web API下Controller的激活与释放流程

    通过<ASP.NET Web API的Controller是如何被创建的?>我们已经对HttpController激活系统的核心对象有了深刻的了解,这些对象包括用于解析程序集和有效Http ...

  9. 在ASP.NET Web API项目中使用Hangfire实现后台任务处理

    当前项目中有这样一个需求:由前端用户的一个操作,需要触发到不同设备的消息推送.由于推送这个具体功能,我们采用了第三方的服务.而这个服务调用有时候可能会有延时,为此,我们希望将消息推送与用户前端操作实现 ...

随机推荐

  1. JS localStorage 存储变量

    if(!window.localStorage && /MSIE/.test(navigator.userAgent)){ if(!window.UserData) { window. ...

  2. a标签 在新页面打开

    <a href="https://www.baidu.com/" target="_blank">下载</a>

  3. vue项目打包部署到nginx 服务器上

    假如要实现的效果如下 http://ip/vue    =>是进入首页访问的路径是  usr/local/nginx/html/vue http://ip/website     =>是进 ...

  4. JSP 指令

    JSP 指令 JSP指令用来设置整个JSP页面相关的属性,如网页的编码方式和脚本语言. 语法格式如下: <%@ directive attribute="value" %&g ...

  5. 关于keyCode, 键盘代码。 和零散的javascript知识。http://js2.coffee/(转化工具)

    这个是coffeescript代码 document.addEventListener 'turbolinks:load', ->   document.getElementById(" ...

  6. bzoj2733: [HNOI2012]永无乡 线段树合并

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  7. 牛客网——F小牛再战(博弈,不懂)

    链接:https://www.nowcoder.net/acm/contest/75/F来源:牛客网 题目描述 共有N堆石子,已知每堆中石子的数量,两个人轮流取石子,每次只能选择N堆石子中的一堆取一定 ...

  8. iOS UI-线程(NSThread)及其安全隐患与通信

    一.基本使用 1.多线程的优缺点 多线程的优点 能适当提高程序的执行效率 能适当提高资源利用率(CPU.内存利用率) 多线程的缺点 开启线程需要占用一定的内存空间(默认情况下,主线程占用1M,子线程占 ...

  9. ossim中Spot5模型bug修复

    ossim中Spot5模型在读取像素视线角时存在一个严重的bug,导致某些点的视线角提取错误. 下面是ossim中getPixelLookAngleX 函数的代码: ossimSpotDimapSup ...

  10. Sublime 中文标题乱码

    ---title:Sublime 中文标题乱码--- #markdown语法(非Github Flavored) #解决办法: 在用户设置里添加一项,强制不根据 dpi 缩放dpi_scale: 1. ...