HDU1102 最小生成树prim算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102
题意:给出任意两个城市之间建一条路的时间,给出哪些城市之间已经建好,问最少还要多少时间使所有的城市连通?
思路:已经建好的城市之间需要的时间设为0,就是求最小生成树的权值和了。
顺便复习一下prim算法。
讲道理,好像我的prim算法没有判断加入这个点是不是会产生回路?
回答:只有生成树集合里的点加入超过1次的时候,它还是要和集合里的某个点连一条边,于是就产生回路了。所以代码通过vis数组判断当前点是不是在生成树集合里
就可以判断是不是会产生回路了。
邻接表形式?
知道思想就可以实现,才是合格的搬砖工,希望以后脱离模板。
附代码:
/*
prim 最小生成树算法
过程:prim算法将图分为两部分,假设原顶点集为V,将其分为S和V-S两部分,S为已经确定在最小生成树上的顶点,
开始时,将任意一个顶点加入到S,然后每次在V-S中寻找距离S中的点最近的点。作为下一个加入最小生成树上的点。
所有N个节点都加入到最小生成树中时,最小生成树构造完毕。 实现:对于邻接矩阵构造的图,可以用low[N]保存每个顶点到已加入生成树中所有点的最小距离。
每次寻找这个距离最小的一个点加入最小生成树中。再根据这个点的距离更新其它未加入生成树中的点。
直到所有的点都加入到最小生成树中。
*/ // Eg:HDU 1102 #include <stdio.h>
#include <string.h>
#include <iostream>
#define inf 1000000
using namespace std; int g[210][210];
int low[210];
int vis[210]; // 表示该点是否已经加入最小生成树中
int n; int prim() {
for (int i=0; i<n; ++i) {
low[i] = g[0][i];
} int ans = 0;
memset(vis, 0, sizeof(vis));
vis[0] = 1; for (int i=1; i<n; ++i) { // 循环n-1次,找剩下的n-1个点。
int k = -1, mindis = inf;
for (int j=0; j<n; ++j) { // 循环找当前剩下的点中 距离最小生成树点集距离最短的点。
if (!vis[j] && low[j] < mindis) {
mindis = low[j];
k = j;
}
} if (k == -1) return -1;
vis[k] = 1; // 加入最小生成树点集
ans += mindis; for (int j=0; j<n; ++j) { // 更新没加入最小生成树的点中 距离是否会缩短。
/*if (!vis[j] && low[j] > low[k] + g[k][j]) {
low[j] = low[k] + g[k][j];
}*/ if (!vis[j] && low[j] > g[k][j]) { // 上面的if是错的。low数组存储的距离是当前点到生成树中所有点距离最小的的点。
low[j] = g[k][j]; // 因为这个点加入最小生成树集合中,可以和其中任意一个点连一条边。
}
}
}
return ans;
} int main() {
int q;
while(cin >> n) {
for (int i=0; i<n; ++i) {
for (int j=0; j<n; ++j) {
cin >> g[i][j];
}
} cin >> q;
for (int i=0; i<q; ++i) {
int a, b;
cin >> a >> b;
a--, b--;
g[a][b] = 0;
g[b][a] = 0;
} int ans = prim();
cout << ans << endl;
}
return 0;
}
HDU1102 最小生成树prim算法的更多相关文章
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 最小生成树Prim算法(邻接矩阵和邻接表)
最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...
- 最小生成树—prim算法
最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[ ...
- Highways POJ-1751 最小生成树 Prim算法
Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...
- SWUST OJ 1075 求最小生成树(Prim算法)
求最小生成树(Prim算法) 我对提示代码做了简要分析,提示代码大致写了以下几个内容 给了几个基础的工具,邻接表记录图的一个的结构体,记录Prim算法中最近的边的结构体,记录目标边的结构体(始末点,值 ...
- 图论算法(五)最小生成树Prim算法
最小生成树\(Prim\)算法 我们通常求最小生成树有两种常见的算法--\(Prim\)和\(Kruskal\)算法,今天先总结最小生成树概念和比较简单的\(Prim\)算法 Part 1:最小生成树 ...
- 最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析
最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢 ...
- 最小生成树——prim算法
prim算法是选取任意一个顶点作为树的一个节点,然后贪心的选取离这棵树最近的点,直到连上所有的点并且不够成环,它的时间复杂度为o(v^2) #include<iostream>#inclu ...
- 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...
随机推荐
- VirtualBox Guest Additions installation
在使用VirtualBox为CentOS安装增强功能时,输出是: 文本: Verifying archive integrity... All good. Uncompressing VirtualB ...
- 【开发者笔记】MQTT python测试笔记
MQTT是基于订阅/发布的物联网协议. python测试需要一个发送进程和接收进程,即一个发送客户端和一个接收客户端,如果这两个客户端工作在同一个topic下,那么就能进行消息互通了. 服务器用“io ...
- thinkphp5使用PHPMailler发送邮件
http://www.dawnfly.cn/article-1-350.html 想要了解thinkphp3.2版本发送邮件的,请点击此链接:http://www.dawnfly.cn/article ...
- <option> 标签的 value 属性
<html> <body> <form action="/example/html/form_action.asp" method="get ...
- 2.1 The Object Model -- Classes and Instances(类和实例)
一.Defining Classes(定义类) 1. 定义一个新的Ember类,调用Ember.Object上的extend()方法: example:定义了一个含有say()方法的新的Person类 ...
- Django:学习笔记(8)——文件上传
Django:学习笔记(8)——文件上传 文件上传前端处理 本模块使用到的前端Ajax库为Axio,其地址为GitHub官网. 关于文件上传 上传文件就是把客户端的文件发送给服务器端. 在常见情况(不 ...
- 2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017) Solution
A. Drawing Borders Unsolved. B. Buildings Unsolved. C. Joyride Upsolved. 题意: 在游乐园中,有n个游玩设施,有些设施之间有道路 ...
- windows监听socket和标准输入
原来的代码 def input_command(self): msg = raw_input('\nPlease input the command:') remote_id = raw_input( ...
- vertica单节点安装教程
[准备] 1.CentOS 7.6的镜像盘(下载地址:官网) 2.vertica-9.1.0-0.x86_64.RHEL6(下载地址:https://pan.baidu.com/s/1IjWBUTku ...
- c++编译时打印宏定义
#pragma message("this is message") #pragma message只能打印字符串,如果想打印任何宏定义可使用: #define PRINT_MAC ...