题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855

题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$

解题思路

题目挺吓人的。先把完整组合数+Fibonacci展开来。

利用Fibonacci的特性,从第一项开始消啊消,消到只有一个数:

$S(0)=f(0)$

$S(1)=f(2)$

$S(2)=f(4)$

$S(n)=f(2*n)$

这样矩阵快速幂就可以了,特判$n=0$时的情况。

快速幂矩阵

$\begin{bmatrix}f1 & f0 \\ 0 & 0\end{bmatrix}\begin{bmatrix}1 & 1 \\1 & 0 \end{bmatrix}=\begin{bmatrix}f2 & f1 \\
0 & 0\end{bmatrix}$

代码

#include "cstdio"
#include "cstring"
#define LL long long
#define mod m
#define K 2
LL n,m;
struct Matrix
{
LL mat[K][K];
Matrix() {memset(mat,,sizeof(mat));}
Matrix(LL *val)
{
int idx=;
for(int i=;i<K;i++)
for(int j=;j<K;j++)
mat[i][j]=val[idx++];
}
};
Matrix operator * (Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<K;i++)
for(int j=;j<K;j++)
{
ret.mat[i][j]=;
for(int k=;k<K;k++)
ret.mat[i][j]+=((a.mat[i][k]*b.mat[k][j])%mod);
}
return ret;
}
Matrix operator ^ (Matrix a,LL n)
{
Matrix ret,base=a;
for(int i=;i<K;i++) ret.mat[i][i]=;
while(n)
{
if(n&) ret=ret*base;
base=base*base;
n>>=;
}
return ret;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d",&n,&m);
if(n==) printf("0\n");
else
{
LL obj=n*;
LL bval[]={,,,};
LL pval[]={,,,};
Matrix Base(bval),Pow(pval),ans=Pow^(obj-);
ans=Base*ans;
printf("%I64d\n",ans.mat[][]%mod);
}
}
}

HDU 2855 (矩阵快速幂)的更多相关文章

  1. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  2. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  3. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  4. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  5. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  6. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

  7. HDU 5950 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. hdu 1757 矩阵快速幂 **

    一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...

  9. HDU 4686 矩阵快速幂 Arc of Dream

    由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by; a[i]*b[i] = ax*bx*a[i-1]*b[ ...

随机推荐

  1. NYOJ之水仙花数

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsAAAAInCAIAAAAZDHiCAAAgAElEQVR4nO3dPVLjzNoG4G8T5CyEFC

  2. Error parsing 'file:///media/RHEL_5.5\\ x86_64\\ DVD/Server'

    Error parsing 'file:///media/RHEL_5.5\\ x86_64\\ DVD/Server' http://lindows.iteye.com/blog/456637 ht ...

  3. Faster-rnnlm代码分析3 - EvaluateLM(前向计算ForwardPropagate)

    先采用一个简单的输入文本做测试 [root@cq01-forum-rstree01.cq01.baidu.com rnnlm]# pwd /home/users/chenghuige/rsc/app/ ...

  4. static_cast、dynamic_cast、reinterpret_cast、const_cast以及C强制类型转换的区别

    static_cast 1. 基础类型之间互转.如:float转成int.int转成unsigned int等 2. 指针与void*之间互转.如:float*转成void*.CBase*转成void ...

  5. 安装oracle 10g RAC执行的几个脚本说明

    1,/u01/app/oracle/oraInventory/orainstRoot.sh 脚本 #!/bin/sh if [ -d "/etc" ]; then /etc; fi ...

  6. IBM AppScan 安全扫描:支持弱 SSL 密码套件 分类: 数据安全 2014-06-28 11:34 1844人阅读 评论(0) 收藏

    问题描述: ​ 解决方法: 1.Server 2008(R2) 根据appScan的修订建议访问地址:http://msdn.microsoft.com/en-us/library/windows/d ...

  7. outlook备份及恢复

    outlook备份及恢复 Reference: http://wenku.baidu.com/link?url=2gtDkCSDoPdnfx3Ungd6on9wdhUTWgbO_vmmKLv1i4df ...

  8. JVM内存结构、垃圾回收那点事

    翻看电脑的文件夹,无意看到了9月份在公司做的一次分享,浏览了一下"婆婆特",发现自己在ppt上的写的引导性问题自己也不能确切的回答出来,哎,知识这东西,平时不常用的没些日子就生疏了 ...

  9. Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA

    E. Cactus   A connected undirected graph is called a vertex cactus, if each vertex of this graph bel ...

  10. ios录音

    #import "ViewController.h" #import <AVFoundation/AVFoundation.h> @interface ViewCont ...