关于 Graph Convolutional Networks 资料收集

  1.  GRAPH CONVOLUTIONAL NETWORKS    ------ THOMAS KIPF, 30 SEPTEMBER 2016

    Link:http://tkipf.github.io/graph-convolutional-networks/#gcns-part-iii-embedding-the-karate-club-network

  2.  Graph 卷积神经网络:概述、样例及最新进展    ------ 2016-10-12

    Link:http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&mid=2651987895&idx=3&sn=8223f5c491ce6388b13ed7b72ea24f5e&chksm=f1216b46c656e250e953410cc61f152fedf5f7c04f261548c24e463b641b2b20bd5cbcd08003&mpshare=1&scene=1&srcid=1013IdNrB4bsRkyxnAOvIhZN#rd

  3.  How powerful are Graph Convolutions? (review of Kipf & Welling, 2016)  

    Link: http://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/?utm_source=tuicool&utm_medium=referral

  4. 

关于 Graph Convolutional Networks 资料收集的更多相关文章

  1. 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition

    Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:4 ...

  2. 论文笔记之:Semi-supervised Classification with Graph Convolutional Networks

    Semi-supervised Classification with Graph Convolutional Networks 2018-01-16  22:33:36 1. 文章主要思想: 2. ...

  3. Graph Convolutional Networks (GCNs) 简介

    Graph Convolutional Networks 2018-01-16  19:35:17 this Tutorial comes from YouTube Video:https://www ...

  4. Semi-Supervised Classification with Graph Convolutional Networks

    Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional netw ...

  5. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (ST-GCN)

    Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 摘要 动态人体骨架模型带有进行动 ...

  6. Emotion Recognition Using Graph Convolutional Networks

    Emotion Recognition Using Graph Convolutional Networks 2019-10-22 09:26:56 This blog is from: https: ...

  7. How to do Deep Learning on Graphs with Graph Convolutional Networks

    翻译: How to do Deep Learning on Graphs with Graph Convolutional Networks 什么是图卷积网络 图卷积网络是一个在图上进行操作的神经网 ...

  8. 论文解读 - Composition Based Multi Relational Graph Convolutional Networks

    1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi- ...

  9. 论文解读(Geom-GCN)《Geom-GCN: Geometric Graph Convolutional Networks》

    Paper Information Title:Geom-GCN: Geometric Graph Convolutional NetworksAuthors:Hongbin Pei, Bingzhe ...

随机推荐

  1. hasOwnProperty,in

    hasOwnProperty,in区别: hasOwnProperty:指出一个对象是否具有指定名称的属性 in:对象是否能够访问此属性(包括直接在对象上访问和通过原型访问) 看下示例代码: (fun ...

  2. Probit回归模型

    Probit模型也是一种广义的线性模型,当因变量为分类变量时,有四种常用的分析模型: 1.线性概率模型(LPM)2.Logistic模型3.Probit模型4.对数线性模型 和Logistic回归一样 ...

  3. windows下面安装casperjs

    因为需要 就学习了一下casperjs,CasperJS是一个开源的导航脚本处理和测试工具,基于PhantomJS(前端自动化测试工具)编写.由于casperjs对PhantomJS的依赖性,所以需要 ...

  4. java selenium 题目二 如何处理Table

    如果操作Table.  例如我有一个table.  table 的列的顺序是会变化的, 行数也是会变化的. 问题: 如果通过名字获取到年龄 HTML 源代码 <html> <body ...

  5. Java:集合工具类-Collections

    Java.util.Collections 集合框架工具类Collections,其方法都是静态的,本身没有构造函数. 常见方法: static <T extends Comparable< ...

  6. IEnumerable接口的Aggregate方法

    以前小猪为了累加一个集合中的类容通常会写出类似这样的C#代码: string result ="": foreach (var item in items) { result+=i ...

  7. Scala HelloWorld

    1) 使用MVN创建项目 mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app -DarchetypeArtif ...

  8. 1427. SMS

    http://acm.timus.ru/problem.aspx?space=1&num=1427 没想到这道题错了N遍  细节很重要呀 代码: #include<iostream> ...

  9. C++编程优化心得(持续更新)

    1. 对齐原则.比如64位总线,每次寻址读取8B.编程时注意变量地址,尽量消耗总线最少的寻址次数.堆内存申请时,系统严格按照对齐原则分配,故而使用时候也尽量不要跨寻址边界. 2. 需要的时候,可为了效 ...

  10. Android - ViewPager+Fragment初始化问题

    Android应用开发中,经常会用到ViewPager + Fragment,虽然效果不错,但随之而来的还有一些问题,下面就说说其中的初始化问题. ViewPager初始化时会预加载前后的2个页面,即 ...