好像题解里都是树状数组(起码我翻到的是

说一种cdq分治的(这应该算是cdq分治了

用cdq比较简单,所以可以作为一个练手题

cdq分治其实是一种模糊的思想,处理\([l,r]\)区间内,有多少\((i,j)\)满足某种条件

这里假设\(i<j\),我们取一个\(mid=\frac{i+j}{2}\)

  • \(i<j\leq mid\),问题转换到区间\([l,mid]\)上解决
  • \(mid<i<j\), 问题转换到区间\([mid+1,r]\)上解决
  • \(i\leq mid <j\),注意这里才是真正干活的地方,前面两种情况都是甩锅给更小的区间

然后具体看下这个题

条件是\(a_i+a_j>b_i+b_j(i<j)\)

可以转化为\(a_i-b_i>b_j-a_j(i<j)\),其实就是把和\(i,j\)有关的项分别放在不等号两边

考虑\(i\leq mid<j\)的情况,则\(i<j\)这个条件已经没用了

开两个数组\(x,y\),分别存\(a_i-b_i(l\leq i\leq mid)\)和\(b_j-a_j(mid<j\leq r)\)的值

然后给它们排个序

从小到大考虑x中元素,有几个y中元素比它小

具体实现用一个cnt变量,表示对于当前的x中的元素,有几个比它小的y中元素,然后每次\(ans=ans+cnt\),,然后用两个指针分别指向x和y中当前的值就行了

每次对区间排序的复杂度是\(O(r-l+1)\)的,每个区间被排序\(\log n\)次(每次把一个区间分成它的一半,因此最多递归\(\log n\)层,每层)

画张丑陋的图理解一下



所以总时间复杂度\(O(n \log^2 n)\)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
int a[200006],b[200006];
int x[200006],y[200006];
LL work(int l,int r){
if(l==r) return 0;
int mid=(l+r)>>1;
x[0]=y[0]=0;
for(reg int i=l;i<=mid;i++) x[++x[0]]=a[i]-b[i];
for(reg int i=mid+1;i<=r;i++) y[++y[0]]=b[i]-a[i];
std::sort(x+1,x+1+x[0]);std::sort(y+1,y+1+y[0]);
reg int posl=1,posr=1,cnt=0;
reg LL ans=0;
for(;posl<=x[0];posl++){
for(;posr<=y[0]&&y[posr]<x[posl];posr++) cnt++;
ans+=cnt;
}
return ans+work(l,mid)+work(mid+1,r);
}
int main(){
n=read();
for(reg int i=1;i<=n;i++) a[i]=read();
for(reg int i=1;i<=n;i++) b[i]=read();
std::printf("%lld",work(1,n));
return 0;
}

CF1324D Pair of Topics的更多相关文章

  1. CF1324D Pair of Topics 题解

    原题链接 简要题意: 有两个数组 \(a_i\),\(b_i\),求有多少组 \(a_i + a_j > b_i + b_j (i \not = j)\). 显然,纯暴力过不了这道题目. 首先, ...

  2. 最简易 Pair of Topics解决方法

    这个题花费了我两天的时间来解决,最终找到了两个比较简单的方法 首先这个题不难看出是寻找a[i]+a[j]<0的情况,我第一开始直接用两个for循环遍历通过不了,应该是复杂度太大了 第一个方法 # ...

  3. Codeforces Round #627 (Div. 3) D - Pair of Topics(双指针)

    题意: 有长为n的a,b两序列,问满足ai+aj>bi+bj(i<j)的i,j对数. 思路: 移项得:(ai-bi)+(aj-bj)>0,i<j即i!=j,用c序列保存所有ai ...

  4. NodeJS学习:爬虫小探

    说明:本文在个人博客地址为edwardesire.com,欢迎前来品尝. 今天来学习alsotang的爬虫教程,跟着把CNode简单地爬一遍. 建立项目craelr-demo 我们首先建立一个Expr ...

  5. NodeJS制作爬虫全过程

    这篇文章主要介绍了NodeJS制作爬虫的全过程,包括项目建立,目标网站分析.使用superagent获取源数据.使用cheerio解析.使用eventproxy来并发抓取每个主题的内容等方面,有需要的 ...

  6. c++ pair 使用

    1. 包含头文件: #include <utility> 2. pair 的操作: pair<T1,T2> p; pair<T1,T2> p(v1,v2); pai ...

  7. 论Pair的重要性

    这些天我在用React和D3做图表,从已经实现的图表里复制了一些坐标轴的代码,发现坐标轴上的n个点里,只有第一个点下面能渲染出文字提示,其余点下面都无法渲染出文字. 和组里的FL一起百思不得其解好几天 ...

  8. 2016 ACM/ICPC Asia Regional Dalian Online 1010 Weak Pair dfs序+分块

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...

  9. pair的使用

    #include<iostream> #include<cmath> #include<cstdio> #include<algorithm> #inc ...

随机推荐

  1. Linux基础篇,Shell

    一.基本知识 Shell Script是一种脚本.可以用来极大的简化计算机的管理.在谱写shell script的时候,需要注意以下问题: 1. 指令的执行是从上而下. 从左而右的分析与执行: 2. ...

  2. TP基础

    一.目录结构 解压缩到web目录下面,可以看到初始的目录结构如下: www WEB部署目录(或者子目录)├─index.php 入口文件├─README.md README文件├─Applicatio ...

  3. Python操作rabbitmq系列(四):根据类型订阅消息

    在上一章中,所有的接收端获取的所有的消息.这一章,我们将讨论,一些消息,仍然发送给所有接收端.其中,某个接收端,只对其中某些消息感兴趣,它只想接收这一部分消息.如下图:C1,只对error感兴趣,C2 ...

  4. 分享一本Java并发编程的免费好书

    最近当当的大促销又开始了,估计很多人脑子一热,又花钱囤了不少技术书吧. 在我看来大部分程序员买技术书的用途(以下排名按用途从大到小): 让领导.同事看见,你看我多爱学习: 给自己一个心理安慰,我还没废 ...

  5. C#多线程系列(3):原子操作

    本章主要讲述多线程竞争下的原子操作. 目录 知识点 竞争条件 线程同步 CPU时间片和上下文切换 阻塞 内核模式和用户模式 Interlocked 类 1,出现问题 2,Interlocked.Inc ...

  6. 控件:DataGridView列类型

    DataGridView的列的类型提供有多种,包括有: (1)DataGridViewTextBoxColumn(文本列,默认的情况下就是这种) (2)DataGridViewComboBoxColu ...

  7. 大佬整理出来的干货:LDA模型实现—Python文本挖掘

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取htt ...

  8. python实现服务器监控报警消息用微信发送(附代码)

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:NicePython PS:如有需要Python学习资料的小伙伴可以加 ...

  9. Alpha Release Note 12/15/2015

    内容提要: ******Personal Photo Experience可供您存放所有的私人照片,系统会自动整理内容,您可以借助搜索功能快速找到所需图片,同时过滤重复图片和低质量图片,给您全新的搜索 ...

  10. Git敏捷开发--reset和clean

    reset 丢弃本地所有修改,强行和上游分支保持一致 git reset --hard HEAD 若仅丢弃某个文件的改动,利用checkout git checkout your_file clean ...