Bob is an avid fan of the video game "League of Leesins", and today he celebrates as the League of Leesins World Championship comes to an end!

The tournament consisted of nn (n≥5n≥5) teams around the world. Before the tournament starts, Bob has made a prediction of the rankings of each team, from 11-st to nn-th. After the final, he compared the prediction with the actual result and found out that the ii-th team according to his prediction ended up at the pipi-th position (1≤pi≤n1≤pi≤n, all pipi are unique). In other words, pp is a permutation of 1,2,…,n1,2,…,n.

As Bob's favorite League player is the famous "3ga", he decided to write down every 33 consecutive elements of the permutation pp. Formally, Bob created an array qq of n−2n−2 triples, where qi=(pi,pi+1,pi+2)qi=(pi,pi+1,pi+2) for each 1≤i≤n−21≤i≤n−2. Bob was very proud of his array, so he showed it to his friend Alice.

After learning of Bob's array, Alice declared that she could retrieve the permutation pp even if Bob rearranges the elements of qq and the elements within each triple. Of course, Bob did not believe in such magic, so he did just the same as above to see Alice's respond.

For example, if n=5n=5 and p=[1,4,2,3,5]p=[1,4,2,3,5], then the original array qq will be [(1,4,2),(4,2,3),(2,3,5)][(1,4,2),(4,2,3),(2,3,5)]. Bob can then rearrange the numbers within each triple and the positions of the triples to get [(4,3,2),(2,3,5),(4,1,2)][(4,3,2),(2,3,5),(4,1,2)]. Note that [(1,4,2),(4,2,2),(3,3,5)][(1,4,2),(4,2,2),(3,3,5)] is not a valid rearrangement of qq, as Bob is not allowed to swap numbers belong to different triples.

As Alice's friend, you know for sure that Alice was just trying to show off, so you decided to save her some face by giving her any permutation pp that is consistent with the array qq she was given.

Input

The first line contains a single integer nn (5≤n≤1055≤n≤105) — the size of permutation pp.

The ii-th of the next n−2n−2 lines contains 33 integers qi,1qi,1, qi,2qi,2, qi,3qi,3 (1≤qi,j≤n1≤qi,j≤n) — the elements of the ii-th triple of the rearranged (shuffled) array qiqi, in random order. Remember, that the numbers within each triple can be rearranged and also the positions of the triples can be rearranged.

It is guaranteed that there is at least one permutation pp that is consistent with the input.

Output

Print nn distinct integers p1,p2,…,pnp1,p2,…,pn (1≤pi≤n1≤pi≤n) such that pp is consistent with array qq.

If there are multiple answers, print any.

Example

Input

5
4 3 2
2 3 5
4 1 2

Output

1 4 2 3 5 

这个题,出现次数最少的在两边,确定了第一个为出现次数 1 2 3的那一组,然后根据那一组暴力即可,用STL优化了一下,不然会超时。

#include<bits/stdc++.h>
using namespace std;
int a[100000],b[100000],c[100000],vis[1000000],n;
vector<int> v[1000000];
int main()
{
cin>>n;
for(int i=0;i<n-2;++i)
{
cin>>a[i]>>b[i]>>c[i];
v[a[i]-1].push_back(i);
v[b[i]-1].push_back(i);
v[c[i]-1].push_back(i);
vis[a[i]-1]=1;
vis[b[i]-1]=1;
vis[c[i]-1]=1;
}
int x=0;
for(;v[x].size()!=1;++x);
vis[x]=0;
cout<<x+1<<" ";
int y,z;
if(v[a[v[x][0]]-1].size()==2)
{
y=a[v[x][0]]-1;
vis[y]=0;
}
else if(v[a[v[x][0]]-1].size()==3)
{
z=a[v[x][0]]-1;
vis[z]=0;
}
if(v[b[v[x][0]]-1].size()==2)
{
y=b[v[x][0]]-1;
vis[y]=0;
}
else if(v[b[v[x][0]]-1].size()==3)
{
z=b[v[x][0]]-1;
vis[z]=0; }
if(v[c[v[x][0]]-1].size()==2)
{
y=c[v[x][0]]-1;
vis[y]=0;
}
else if(v[c[v[x][0]]-1].size()==3)
{
z=c[v[x][0]]-1;
vis[z]=0;
}
cout<<y+1<<" "<<z+1<<" ";
int h=z;
int cnt=3;
while(cnt++<n)
{
for(int i=0;i<v[h].size();++i)
{ if(vis[a[v[h][i]]-1]+vis[b[v[h][i]]-1]+vis[c[v[h][i]]-1]==1)
{
if(vis[a[v[h][i]]-1]==1){
cout<<a[v[h][i]]<<" ";
vis[a[v[h][i]]-1]=0;
h=a[v[h][i]]-1;
}
else if(vis[b[v[h][i]]-1]==1){
cout<<b[v[h][i]]<<" ";
vis[b[v[h][i]]-1]=0;
h=b[v[h][i]]-1;
}
else if(vis[c[v[h][i]]-1]==1){
cout<<c[v[h][i]]<<" ";
vis[c[v[h][i]]-1]=0;
h=c[v[h][i]]-1;
}
break;
}
}
}
}

Codeforce 1255 Round #601 (Div. 2) C. League of Leesins (大模拟)的更多相关文章

  1. Codeforce 1255 Round #601 (Div. 2)D. Feeding Chicken (模拟)

    Long is a huge fan of CFC (Codeforces Fried Chicken). But the price of CFC is increasing, so he deci ...

  2. Codeforce 1255 Round #601 (Div. 2)B. Fridge Lockers(思维)

    Hanh lives in a shared apartment. There are nn people (including Hanh) living there, each has a priv ...

  3. Codeforce 1255 Round #601 (Div. 2) A. Changing Volume (贪心)

    Bob watches TV every day. He always sets the volume of his TV to bb. However, today he is angry to f ...

  4. Codeforces Round #601 (Div. 2) C League of Leesins

    把每一次输入的一组数字存下来,然后把每个数字出现的组数存下来 然后找只出现过一次的数字a,那么这个数字a不是开头就是结尾,默认为开头(是哪个都无所谓),然后去找和它出现在同一组的两个数字b和c,而b和 ...

  5. 【cf比赛记录】Codeforces Round #601 (Div. 2)

    Codeforces Round #601 (Div. 2) ---- 比赛传送门 周二晚因为身体不适鸽了,补题补题 A // http://codeforces.com/contest/1255/p ...

  6. Codeforces Round #601 (Div. 2)

    传送门 A. Changing Volume 签到. Code /* * Author: heyuhhh * Created Time: 2019/11/19 22:37:33 */ #include ...

  7. codeforce Codeforces Round #201 (Div. 2)

    cf 上的一道好题:  首先发现能生成所有数字-N 判断奇偶 就行了,但想不出来,如何生成所有数字,解题报告 说是  所有数字的中最大的那个数/所有数字的最小公倍数,好像有道理:纪念纪念: #incl ...

  8. CodeForce edu round 53 Div 2. D:Berland Fair

    D. Berland Fair time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  9. Codeforces Round #601 (Div. 2) E2. Send Boxes to Alice (Hard Version)

    Codeforces Round #601 (Div. 2) E2. Send Boxes to Alice (Hard Version) N个盒子,每个盒子有a[i]块巧克力,每次操作可以将盒子中的 ...

随机推荐

  1. Mysql 临时表+视图

    原文地址:http://www.cnblogs.com/mrdz/p/6195878.html 学习内容: 临时表和视图的基本操作... 临时表与视图的使用范围... 1.临时表   临时表:临时表, ...

  2. 创建堆(python)

    创建最大(小)堆 二叉堆本质上是一种完全二叉树,存储方式并不是链式存储,而是顺序存储 堆操作:插入(叶子节点上调),删除(堆顶元素下沉) 堆创建:非叶子节点下沉(从最后一个非叶子节点开始) 最小堆: ...

  3. VSCode设置大小写转换的快捷键

    本文已同步到专业技术网站 www.sufaith.com, 该网站专注于前后端开发技术与经验分享, 包含Web开发.Nodejs.Python.Linux.IT资讯等板块. VSCode在默认情况下没 ...

  4. 小猪佩奇C代码实现

    // ASCII Peppa Pig by Milo Yip #include <stdio.h> #include <math.h> #include <stdlib. ...

  5. Powershell如何制定属性并输出

    这个标题看着有些云里雾里.... 前一阵,群里有个朋友问博主“我想把所有用户的SMTP地址全部输出到CSV文件中进行统计,但是SMTP地址似乎输出的是错误的,可在shell里看输出的内容是正确的阿” ...

  6. 对称加密算法在C#中的踩坑日常

    前言 有幸接触了一下传说中的对称加密算法3DES 感觉这些加密算法与我的工作是想去甚远的,一般没什么机会接触这些东西 今次了解了一下3DES这个对称算法 原理算不上明白,算是踩了C#中的一些坑吧 C# ...

  7. ftl中几个特殊的用法

    @ 注意${}为变量的渲染显示,即先计算后打印出来,而<>里面为定义等操作符的定义 ,而首尾2个<>中间部分一般为计算打印部分 @数据模型中如果不是以map数据来封装的,而是直 ...

  8. three.js obj转js的详细步骤 convert_obj_three.py的用法

    three.js是最近非常流行的一个前端webgl库. js格式的模型文件是three.js中可以直接加载的文件.使用THREE.JSONLoader()直接加载,而不需要引用其它的loader插件. ...

  9. S - Primitive Primes CodeForces - 1316C 数学

    数学题 在f(x)和g(x)的系数里找到第一个不是p的倍数的数,然后相加就是答案 为什么? 设x1为f(x)中第一个不是p的倍数的系数,x2为g(x)...... x1+x2前的系数为(a[x1+x2 ...

  10. Labyrinth 树的直径加DFS

    The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is d ...