2020-03-15 16:41:45

问题描述:

给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合。你可以假设二维矩阵的四个边缘都被水包围着。

找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为0。)

示例 1:

[[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
对于上面这个给定矩阵应返回 6。注意答案不应该是11,因为岛屿只能包含水平或垂直的四个方向的‘1’。

示例 2:

[[0,0,0,0,0,0,0,0]]
对于上面这个给定的矩阵, 返回 0。

注意: 

给定的矩阵grid 的长度和宽度都不超过 50。

相似问题:

749. 隔离病毒

803. 打砖块

问题求解:

解法一:DFS

使用DFS求解可以理解为将整张图中的连通分量进行染色,在染色过程中记录下当前染色的色块数量,最后取最大值即可。

时间复杂度:O(mn)

    int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int color = 1;
int area = 0;
int res = 0;
public int maxAreaOfIsland(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 1) {
area = 0;
dfs(grid, i, j, ++color);
res = Math.max(res, area);
}
}
}
return res;
} private void dfs(int[][] grid, int x, int y, int color) {
int m = grid.length;
int n = grid[0].length;
grid[x][y] = color;
area += 1;
for (int[] dir : dirs) {
int nx = x + dir[0];
int ny = y + dir[1];
if (nx < 0 || nx >= m || ny < 0 || ny >= n || grid[nx][ny] != 1) continue;
dfs(grid, nx, ny, color);
}
}

解法二:并查集

采用并查集也可以解决这个问题,具体来说,对于每一个还未被连接的陆地,我们需要将其和它的四个邻居进行union,并且在union的时候需要维护这个集合的总的个数。最后返回森林中个数最大的即可。

时间复杂度:O(mn)

    int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public int maxAreaOfIsland(int[][] grid) {
int res = 0;
int m = grid.length;
int n = grid[0].length;
int[] parent = new int[m * n];
int[] area = new int[m * n];
for (int i = 0; i < m * n; i++) {
parent[i] = i;
area[i] = 1;
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
int key = i * n + j;
if (grid[i][j] == 1 && parent[key] == key) {
for (int[] dir : dirs) {
int ni = i + dir[0];
int nj = j + dir[1];
if (ni < 0 || ni >= m || nj < 0 || nj >= n || grid[ni][nj] == 0) continue;
int nk = ni * n + nj;
union(parent, key, nk, area);
}
}
}
}
for (int i = 0; i < m * n; i++) {
if (grid[i / n][i % n] == 1 && parent[i] == i) res = Math.max(res, area[i]);
}
return res;
} private int find(int[] parent, int i) {
if (parent[i] != i) parent[i] = find(parent, parent[i]);
return parent[i];
} private boolean union(int[] parent, int i, int j, int[] area) {
int pi = find(parent, i);
int pj = find(parent, j);
if (pi == pj) return false;
parent[pi] = pj;
area[pj] += area[pi];
return true;
}

 

803. 打砖块

问题描述:

我们有一组包含1和0的网格;其中1表示砖块。 当且仅当一块砖直接连接到网格的顶部,或者它至少有一块相邻(4 个方向之一)砖块不会掉落时,它才不会落下。

我们会依次消除一些砖块。每当我们消除 (i, j) 位置时, 对应位置的砖块(若存在)会消失,然后其他的砖块可能因为这个消除而落下。

返回一个数组表示每次消除操作对应落下的砖块数目。

示例 1:

输入:
grid = [[1,0,0,0],[1,1,1,0]]
hits = [[1,0]]
输出: [2]
解释: 
如果我们消除(1, 0)位置的砖块, 在(1, 1) 和(1, 2) 的砖块会落下。所以我们应该返回2。

示例 2:

输入:
grid = [[1,0,0,0],[1,1,0,0]]
hits = [[1,1],[1,0]]
输出:[0,0]
解释:
当我们消除(1, 0)的砖块时,(1, 1)的砖块已经由于上一步消除而消失了。所以每次消除操作不会造成砖块落下。注意(1, 0)砖块不会记作落下的砖块。

注意:

网格的行数和列数的范围是[1, 200]。
消除的数字不会超过网格的区域。
可以保证每次的消除都不相同,并且位于网格的内部。
一个消除的位置可能没有砖块,如果这样的话,就不会有砖块落下。

问题求解:

解法一:DFS

我们可以使用dfs进行模拟,每次击打砖块后,对其四个邻居进行判断,看其是否会掉落,如果掉落,则将其连通块统一设置为0。

时间复杂度:O(mn*len(hits))

    // leetcode AC; lintcode Fail
int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int cnt = 0;
public int[] hitBricks(int[][] grid, int[][] hits) {
int m = grid.length;
int n = grid[0].length;
int k = hits.length;
int[] res = new int[k];
for (int i = 0; i < k; i++) {
int[] hit = hits[i];
int x = hit[0];
int y = hit[1];
if (grid[x][y] == 0) continue;
grid[x][y] = 0;
cnt = 0;
for (int[] dir : dirs) {
int nx = x + dir[0];
int ny = y + dir[1];
if (nx < 0 || nx >= m || ny < 0 || ny >= n || grid[nx][ny] == 0) continue;
if (is_fall(grid, nx, ny, new int[m][n])) hit_down(grid, nx, ny);
}
res[i] = cnt;
}
return res;
} private boolean is_fall(int[][] grid, int x, int y, int[][] used) {
int m = grid.length;
int n = grid[0].length;
if (x == 0) return false;
used[x][y] = 1;
for (int[] dir : dirs) {
int nx = x + dir[0];
int ny = y + dir[1];
if (nx < 0 || nx >= m || ny < 0 || ny >= n || grid[nx][ny] == 0 || used[nx][ny] == 1) continue;
if (!is_fall(grid, nx, ny, used)) return false;
}
return true;
} private void hit_down(int[][] grid, int x, int y) {
int m = grid.length;
int n = grid[0].length;
grid[x][y] = 0;
cnt += 1;
for (int[] dir : dirs) {
int nx = x + dir[0];
int ny = y + dir[1];
if (nx < 0 || nx >= m || ny < 0 || ny >= n || grid[nx][ny] == 0) continue;
hit_down(grid, nx, ny);
}
}

  

解法二:并查集

上述的DFS模拟的算法在lintcode里无法通过,显示递归深度过多。

本题也可以使用并查集求解,主要要考虑到的是如何union:将敲砖块转变成添加砖块,从头开始敲砖块等价于从末尾开始添加砖块,这样就可以使用union操作了。另外,我们还需要一个节点表示所有连接到顶部的集合。

时间复杂度:O(mn * len(hits))

    int[] parent;
int[] size;
int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public int[] hitBricks(int[][] grid, int[][] hits) {
int[] res = new int[hits.length];
int m = grid.length;
int n = grid[0].length;
parent = new int[m * n + 1];
size = new int[m * n + 1];
for (int i = 0; i <= m * n; i++) {
parent[i] = i;
size[i] = 1;
}
int[][] after = new int[m][n];
for (int i = 0; i < m; i++) after[i] = Arrays.copyOf(grid[i], n);
for (int[] hit : hits) {
int x = hit[0];
int y = hit[1];
after[x][y] = 0;
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (after[i][j] == 1) {
for (int[] dir : dirs) {
int ni = i + dir[0];
int nj = j + dir[1];
if (ni < 0 || ni >= m || nj < 0 || nj >= n || after[ni][nj] == 0) continue;
union(i * n + j, ni * n + nj);
}
if (i == 0) union(i * n + j, n * m);
}
}
}
for (int i = hits.length - 1; i >= 0; i--) {
int[] brick = hits[i];
int x = brick[0];
int y = brick[1];
if (grid[x][y] == 0) continue;
after[x][y] = 1;
int prev = size[find(m * n)];
if (x == 0) union(x * n + y, m * n);
for (int[] dir : dirs) {
int nx = x + dir[0];
int ny = y + dir[1];
if (nx < 0 || nx >= m || ny < 0 || ny >= n || after[nx][ny] == 0) continue;
union(x * n + y, nx * n + ny);
}
res[i] = Math.max(0, size[find(m * n)] - prev - 1);
}
return res;
} private int find(int i) {
if (parent[i] != i) parent[i] = find(parent[i]);
return parent[i];
} private boolean union(int i, int j) {
int pi = find(i);
int pj = find(j);
if (pi == pj) return false;
parent[pi] = pj;
size[pj] += size[pi];
return true;
}

  

图-连通分量-DFS-并查集-695. 岛屿的最大面积的更多相关文章

  1. [LeetCode]695. 岛屿的最大面积(DFS/BFS)、200. 岛屿数量(DFS/BFS待做/并差集待做)

    695. 岛屿的最大面积 题目 给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合.你可以假设二维矩阵的四个边缘都被 ...

  2. Leetcode之深度优先搜索(DFS)专题-695. 岛屿的最大面积(Max Area of Island)

    Leetcode之深度优先搜索(DFS)专题-695. 岛屿的最大面积(Max Area of Island) 深度优先搜索的解题详细介绍,点击 给定一个包含了一些 0 和 1的非空二维数组 grid ...

  3. Java实现 LeetCode 695 岛屿的最大面积(DFS)

    695. 岛屿的最大面积 给定一个包含了一些 0 和 1 的非空二维数组 grid . 一个 岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在水平或者竖直方向上相 ...

  4. Leetcode题目200.岛屿数量(BFS+DFS+并查集-中等)

    题目描述: 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 ...

  5. 1021. Deepest Root (25)——DFS+并查集

    http://pat.zju.edu.cn/contests/pat-a-practise/1021 无环连通图也可以视为一棵树,选定图中任意一点作为根,如果这时候整个树的深度最大,则称其为 deep ...

  6. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

  7. Codeforces 1027D Mouse Hunt (强连通缩点 || DFS+并查集)

    <题目链接> 题目大意: 有n个房间,每个房间都会有一只老鼠.处于第i个房间的老鼠可以逃窜到第ai个房间中.现在要清理掉所有的老鼠,而在第i个房间中防止老鼠夹的花费是ci,问你消灭掉所有老 ...

  8. 洛谷P2542 [AHOI2005]航线规划(LCT,双连通分量,并查集)

    洛谷题目传送门 太弱了不会树剖,觉得LCT好写一些,就上LCT乱搞,当LCT维护双连通分量的练手题好了 正序删边是不好来维护连通性的,于是就像水管局长那样离线处理,逆序完成操作 显然,每个点可以代表一 ...

  9. ZOJ 3811 / 2014 牡丹江赛区网络赛 C. Untrusted Patrol bfs/dfs/并查集

    Untrusted Patrol Time Limit: 3 Seconds                                     Memory Limit: 65536 KB    ...

随机推荐

  1. python 爬虫保存文件的几种方法

    import os os.makedirs('./img/', exist_ok=True) IMAGE_URL = "https://morvanzhou.github.io/static ...

  2. Spring5源码分析(1)设计思想与结构

    1 源码地址(带有中文注解)git@github.com:yakax/spring-framework-5.0.2.RELEASE--.git Spring 的设计初衷其实就是为了简化我们的开发 基于 ...

  3. L2-013 红色警报(25 分)

    L2-013 红色警报(25 分)战争中保持各个城市间的连通性非常重要.本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报.注意:若该国本来就不完全连通,是 ...

  4. Python学习笔记--装饰器的实验

    装饰器既然可以增加原来函数的功能,那能不能改变传给原函数的参数呢? 我们实验一下,先上代码: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date ...

  5. 原生js实现在表格用鼠标框选并有反选功能

    今天应同学要求,需要写一个像Excel那样框选高亮,并且实现框选区域实现反选功能.要我用原生js写,由于没什么经验翻阅了很多资料,第一次写文章希望各位指出不足!! 上来先建表 <div clas ...

  6. JZOJ 3526. 【NOIP2013模拟11.7A组】不等式(solve)

    3526. [NOIP2013模拟11.7A组]不等式(solve) (File IO): input:solve.in output:solve.out Time Limits: 1000 ms M ...

  7. Springboot与Maven多环境配置文件夹解决方案

    Profile用法 我们在application.yml中为jdbc.name赋予一个值,这个值为一个变量 jdbc: username: ${jdbc.username} Maven中的profil ...

  8. elasticsearch 单机安装

    一.elasticsearch下载 1.elastic 官网:https://www.elastic.co/cn/ 2.elasticsearch 下载地址:https://www.elastic.c ...

  9. webpack进阶(二)

    1)webpack动态打包所有依赖项,避免打包未使用的模块. 2)转换css的loader有:css-loader,style-loader,加载图片或文件的loader是:file-loader,如 ...

  10. JS数组遍历方法集合

    就让我们在逆战中成长吧,加油武汉,加油自己 1.for循环 使用零时变量将长度存起来,当数组较大时优化效果才会比较明显. var ar1=[2,4,6,8] for(var i=0;i<ar1. ...