BSGS&ExBSGS

求解形如

\[a^x\equiv b\pmod p
\]

的高次同余方程

BSGS

假装\(gcd(a,p)=1\)。

设\(m=\lceil\sqrt p \rceil\)

然后把\(x\)分解成

\[x=i*m+j
\]

的形式。

\[a^x\equiv b\pmod p
\]

\[a^{i*m+j}\equiv b\pmod p
\]

\[a^{im}\equiv b/a^j\pmod p
\]

这时我们发现,\(1≤j≤m-1\),也就是说枚举\(j\)是非常简单的。

这样我们就可以把\(m-1\)个\(j\)全都存起来,存到哈希表中,然后枚举\(i\),这样就可以在\(O(\sqrt n + log (n))\)的时间内求出解了。(分块 + map)

(时间复杂度是wyh在网上找的,自己不会证qwq

ExBSGS

刚刚我们假装\(gcd(a,p)=1\),那要是没有这个条件怎么办呢?

很简单,我们只要通过把两边同时除以 他们的 gcd 就好啦qwq

设\(g=gcd(a,p)\),如果\(g\not| b\),显然如果\(p=1\)则\(x=0\),否则方程无解

我们就得到

\[a^{x-1}*\frac{a}{g}\equiv \frac{b}{g}\pmod {\frac{p}{g}}
\]

\[a^{x-1}\equiv \frac{b}{a}\pmod {\frac{p}{g}}
\]

这样一直做下去,直到\(g=1\)为止。

有一个误区(对于我这种蒟蒻)就是\(a\)和\(b/g\)不一定互质。这是zzy学长告诉wyh的qwq,还是学长好啊qwq。

好感动啊。。。

Code


typedef long long ll;
map<ll,ll> ma;
inline ll bsgs(ll a,ll b)//解a^x同余b (%mod)
{
a%=mod;b%=mod;
ma.clear();
ll m=ll(sqrt(mod+1)),e=1;
for(int j=0;j<m;++j)
{
if(!ma.count(e)) ma[e]=j;
e=e*a%mod;
}
if(gcd(e,mod)!=1) return -1;
ll inv=inverse(e);//逆元
for(int i=0;i<m;++i)
{
if(ma.count(b)) return i*m+ma[b];
b=b*inv%mod;
}
return -1;
}

BSGS&ExBSGS的更多相关文章

  1. BSGS&EXBSGS 大手拉小手,大步小步走

    大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...

  2. [note]BSGS & exBSGS

    BSGS (感觉这东西还是要写一下) BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题 设\(m=\lceil\sqrt p\rceil,k ...

  3. 算法笔记--BSGS && exBSGS 模板

    https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...

  4. BSGS && EXBSGS

    基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...

  5. BSGS+exBSGS POJ2417+POJ3243

    a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...

  6. Noip前的大抱佛脚----数论

    目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...

  7. 各种友(e)善(xin)数论总集(未完待续),从入门到绝望

    目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...

  8. REHの收藏列表

    搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...

  9. ZROI 2019 暑期游记

    ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...

随机推荐

  1. pandas 存储文件到MySQL 以及读取

    pandas导入数据到MySQL 1.导入必要的库 2.创建链接 3.导入数据 import pandas as pd from sqlalchemy import create_engine con ...

  2. Page Cache(页缓存)

    Page Cache 由内存中的物理page组成,其内容对应磁盘上的block. page cache的大小是动态变化的. backing store: cache缓存的存储设备 一个page通常包含 ...

  3. Linux操作系统服务器学习笔记一

    初识Linux: Linux 是什么? Linux是一套免费使用和自由传播的类Unix操作系统,是一个多用户.多任务.支持多线程和多CPU的操作系统.它能运行主要的UNIX工具软件.应用程序和网络协议 ...

  4. PPT页面动画制作

    因为武汉新型冠状肺炎的影响,今年自从2月3号开工以来,就在家办公.我的任务刚好是安排做PPT,虽说之前做过PPT,但大家都知道,作为一个IT测试工程师,更多的是测试工作,只有在培训,还有年终汇报的时候 ...

  5. Python爬取51job实例

    用Python爬取51job里面python相关职业.工作地址和薪资. 51job上的信息 程序代码 from bs4 import BeautifulSoup from urllib.request ...

  6. Linux命令:ping命令

    ping命令:类似于windows的ping命令,用于测试网络主机ICMP请求回应的 ping选项 ping -c  #             # 执行次数 -w #             #测试 ...

  7. IP地址规划

    IP地址(Internet Protocol Address),缩写为IP Adress,是一种在Internet上的给主机统一编址的地址格式,也称为网络协议(IP协议)地址.它为互联网上的每一个网络 ...

  8. Mysql 锁定 读情况

    在一个事务中,标准的SELECT语句是不会加锁,但是有两种情况例外. SELECT ... LOCK IN SHARE MODE SELECT ... FOR UPDATE SELECT ... LO ...

  9. 笔记||Python3进阶之读取和写入yaml配置文件

    yaml是专门用来写配置文件的语言,简洁强大,远比JSON格式方便,yaml在python语言中有PyYAML安装包. - 首先需要pip安装:pip install pyyaml - yaml基本语 ...

  10. VBS 脚本对象

    Dictionary对象(1) 1.        属性: a)        compareMode b)       count c)        key d)       item 2.    ...