BSGS&ExBSGS
BSGS&ExBSGS
求解形如
\]
的高次同余方程
BSGS
假装\(gcd(a,p)=1\)。
设\(m=\lceil\sqrt p \rceil\)
然后把\(x\)分解成
\]
的形式。
\]
\]
\]
这时我们发现,\(1≤j≤m-1\),也就是说枚举\(j\)是非常简单的。
这样我们就可以把\(m-1\)个\(j\)全都存起来,存到哈希表中,然后枚举\(i\),这样就可以在\(O(\sqrt n + log (n))\)的时间内求出解了。(分块 + map)
(时间复杂度是wyh在网上找的,自己不会证qwq
ExBSGS
刚刚我们假装\(gcd(a,p)=1\),那要是没有这个条件怎么办呢?
很简单,我们只要通过把两边同时除以 他们的 gcd 就好啦qwq
设\(g=gcd(a,p)\),如果\(g\not| b\),显然如果\(p=1\)则\(x=0\),否则方程无解
我们就得到
\]
\]
这样一直做下去,直到\(g=1\)为止。
有一个误区(对于我这种蒟蒻)就是\(a\)和\(b/g\)不一定互质。这是zzy学长告诉wyh的qwq,还是学长好啊qwq。

好感动啊。。。
Code
typedef long long ll;
map<ll,ll> ma;
inline ll bsgs(ll a,ll b)//解a^x同余b (%mod)
{
a%=mod;b%=mod;
ma.clear();
ll m=ll(sqrt(mod+1)),e=1;
for(int j=0;j<m;++j)
{
if(!ma.count(e)) ma[e]=j;
e=e*a%mod;
}
if(gcd(e,mod)!=1) return -1;
ll inv=inverse(e);//逆元
for(int i=0;i<m;++i)
{
if(ma.count(b)) return i*m+ma[b];
b=b*inv%mod;
}
return -1;
}
BSGS&ExBSGS的更多相关文章
- BSGS&EXBSGS 大手拉小手,大步小步走
大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...
- [note]BSGS & exBSGS
BSGS (感觉这东西还是要写一下) BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题 设\(m=\lceil\sqrt p\rceil,k ...
- 算法笔记--BSGS && exBSGS 模板
https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...
- BSGS && EXBSGS
基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...
- BSGS+exBSGS POJ2417+POJ3243
a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...
- Noip前的大抱佛脚----数论
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...
- 各种友(e)善(xin)数论总集(未完待续),从入门到绝望
目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- ZROI 2019 暑期游记
ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...
随机推荐
- BlockingQueue的几个实现分析
ArrayBlockingQueue 底层以数组的结构存放队列元素,容量大小不可改变. 先看下变量: items:数组,用于存放队列中的元素 takeIndex:获取元素的索引位置 putIndex: ...
- Nessus忘记用户名和密码
以管理员身份运行cmd,切换到Nessus的安装目录,执行以下操作.
- WKWebView单个界面添加请求头
https://www.jianshu.com/p/14b9ea4bf1d4 https://github.com/Yeatse/NSURLProtocol-WebKitSupport/blob/ma ...
- Java 中 VO、PO、DTO、BO、POJO、DAO 之间的区别与解释
转载:https://www.cnblogs.com/hunmeng/p/11298680.html VO value object:值对象 通常用于业务层之间的数据传递,由new创建,由GC回收. ...
- 8 HTML DOM 元素的查找与改变&改变CSS样式&HTML事件
HTML DOM(Document Object Model)文档对象模型 当网页被加载时,浏览器会创建页面的文档对象模型. HTMLDOM 定义了用于HTML的一系列标准的对象.通过DOM,你可以访 ...
- 1003 Emergency (25分) 求最短路径的数量
1003 Emergency (25分) As an emergency rescue team leader of a city, you are given a special map of ...
- C++中函数访问数组的方式
在书写C++代码时,往往为了令代码更加简洁高效.提高代码可读性,会对定义的函数有一些特殊的要求:比如不传递不必要的参数,以此来让函数的参数列表尽可能简短. 当一个函数需要访问一个数组元素时,出于上述原 ...
- leetcode295 Find Median from Data Stream
""" Median is the middle value in an ordered integer list. If the size of the list is ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表单:选择框(Select)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:上下文类
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...