FFT快速傅里叶变换的python实现
FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码。
# encoding=utf-8 import numpy as np
import pylab as pl # 导入和matplotlib同时安装的作图库pylab sampling_rate = 8000 # 采样频率8000Hz
fft_size = 512 # 采样点512,就是说以8000Hz的速度采512个点,我们获得的数据只有这512个点的对应时刻和此时的信号值。
t = np.linspace(0, 1, sampling_rate) # 截取一段时间,截取是任意的,这里取了0~1秒的一段时间。 x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t) # 输入信号序列,人工生成了一段信号序列,范围在0~1秒
xs = x[:fft_size] # 由上所述,我们只采样了512个点,所以我们只获得了前512个点的数据
xf = np.fft.rfft(xs)/fft_size # 调用np.fft的函数rfft(用于实值信号fft),产生长度为fft_size/2+1的一个复数向量,分别表示从0Hz~4000Hz的部分,这里之所以是4000Hz是因为Nyquist定理,采样频率8000Hz,则能恢复带宽为4000Hz的信号。最后/fft_size是为了正确显示波形能量 freqs = np.linspace(0, sampling_rate//2, fft_size//2 + 1) # 由上可知,我们得到了数据,现在产生0~4000Hz的频率向量,方便作图
xfp = 20*np.log10(np.clip(np.abs(xf), 1e-20, 1e1000)) # 防止幅值为0,先利用clip剪裁幅度,再化成分贝 pl.figure(figsize=(8, 4)) # 生成画布
pl.subplot(211) # 生成子图,211的意思是将画布分成两行一列,自己居上面。
pl.plot(t[:fft_size], xs) # 对真实波形绘图
pl.xlabel(u"time(s)")
pl.title(u"The Wave and Spectrum of 156.25Hz and 234.375Hz")
pl.subplot(212) # 同理
pl.plot(freqs, xfp) # 对频率和幅值作图,xlabel是频率Hz,ylabel是dB
pl.xlabel(u"Hz")
pl.subplots_adjust(hspace=0.4) # 调节绘图参数
pl.show()
代码进行了详细标注。有一个小细节是FFT对于取样时间有要求。N点FFT进行精确频谱分析的要求是N个取样点包含整数个取样对象的波形。因此N点FFT能够完美计算频谱,对取样对象的要求是n*Fs/N(n*采样频率/FFT长度)在本例中Fs = 8000Hz,N=512 base_freq=15.625Hz 所以本例中给出了频率为156.25Hz(n=10)和234.375Hz(n=15)做例子。
效果如下:
FFT快速傅里叶变换的python实现的更多相关文章
- CQOI2018 九连环 打表找规律 fft快速傅里叶变换
题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...
- FFT 快速傅里叶变换 学习笔记
FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- FFT快速傅里叶变换算法
1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...
- 傅里叶变换通俗解释及快速傅里叶变换的python实现
通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...
- FFT —— 快速傅里叶变换
问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...
- [C++] 频谱图中 FFT快速傅里叶变换C++实现
在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...
- matlab中fft快速傅里叶变换
视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...
- FFT快速傅里叶变换
FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式.多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这 ...
随机推荐
- Nginx 运维(安装与使用)
Nginx 运维(安装与使用) 普通安装 Windows安装 (1)进入官方下载地址,选择合适版本(nginx/Windows-xxx). (2)解压到本地 (3)启动 下面以 C 盘根目录为例说明下 ...
- MySQL复制表结构以及复制表等等
mysql中用命令行复制表结构的方法主要有一下几种: 1.只复制表结构到新表 1 CREATE TABLE 新表 SELECT * FROM 旧表 WHERE 1=2; 或 1 CREATE TABL ...
- vue项目中使用bpmn-番外篇(留言问题总结)
前情提要 “vue项目中使用bpmn-xxxx”系列的七篇文章在上周已经更新完成,发表后,有小伙伴在使用时提出了一些文章中没有讲到的问题,此篇作为番外篇,将大家提出的共性问题解答一下,欢迎大家支持原创 ...
- 0515项目优化和List集合
0515项目优化和List集合 1. 项目优化 1.1 分析当前情况 问题 数据存储是数组形式,数据类型明确.复用度较低. 需求 Student操作使用的代码,StudentManager想要操作考虑 ...
- 域对象的作用范围 & 请求的转发和重定向
1. 和属性相关的方法: ①. 方法 void setAttribute(String name, Object o): 设置属性 Object getAttribute(String name): ...
- Chisel3 - Tutorial - ShiftRegister
https://mp.weixin.qq.com/s/LKiXUgSnt3DzgFLa9zLCmQ 简单的寄存器在时钟的驱动下,逐个往下传值. 参考链接: https://github.com ...
- A barrier for Mobile Forensics - Samsung Secure Folder
Since I mentioned about "Second Space", let's take a look at Samsung "Secure Folder&q ...
- Linux(二) 系统远程访问
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 1. Why?为什么需要远程访问? 人和人之间对话有两种方式,一种是面对面直接交谈,另一种是打电话. 我 ...
- Java实现 蓝桥杯 图书排列(全排列)
标题:图书排列 将编号为1~10的10本书排放在书架上,要求编号相邻的书不能放在相邻的位置. 请计算一共有多少种不同的排列方案. 注意,需要提交的是一个整数,不要填写任何多余的内容. 9 9 10 9 ...
- Java中TreeSet的详细用法
第1部分 TreeSet介绍 TreeSet简介 TreeSet 是一个有序的集合,它的作用是提供有序的Set集合.它继承于AbstractSet抽象类,实现了NavigableSet, Clonea ...