题目给出n,m,k

然后给出n*m的矩阵a[i][j]代表第i个人在获得j 颗糖果能得到的满足值,

然后k是k行每行输入三个整数x,y,z     ,x,y,z表示一组限制表示第x个人分到的糖数减去第y个人分到的糖数不大于z;

数据小,考虑网络流(*^_^*)

因为题目的z可能为负数,而网络流建边容量时的负数概念不能被覆盖,所有建立一个等效‘0’位置的值,sign=1000(大于负数绝对值就行)

对于每个人,我们把他拆成m个点,源点向第一个点连inf流量的边,而剩余的点连sign-a[][]中存的值,最后一个a[][]则连被分出来的点到超级汇点;

先不考虑限制条件,我们现在建边所跑出来的最大流并非每个人的最小满足值之和,因为我们建容量时sign-a[][];而n*sign-maxflow则是每个人的最大满足值之和

而题目又有限制条件,所有把满足的按容量inf连,具体看代码,得到答案就是我们上面说的那个

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=55,maxk=100005,inf=0x3f3f3f3f; int a[maxn][maxn];
int head[maxn*maxn],dist[maxn*maxn],current[maxn*maxn];
int num; struct Edge {
int from,to,flow,pre;
};
Edge edge[maxk]; void addedge(int from,int to,int flow) {
edge[num]=(Edge){from,to,flow,head[from]};
head[from]=num++;
edge[num]=(Edge){to,from,0,head[to]};
head[to]=num++;
} bool bfs (int n) {
queue<int> q;
q.push(0);
memset(dist,-1,sizeof(dist));
dist[0]=0;
while (!q.empty()) {
int now=q.front();
q.pop();
for (int i=head[now];i!=-1;i=edge[i].pre) {
int to=edge[i].to;
if (dist[to]==-1&&edge[i].flow>0) {
dist[to]=dist[now]+1;
q.push(to);
}
}
}
return dist[n]!=-1;
} int dfs(int now,int flow,int n) {
int f;
if (now==n) return flow;
for (int i=current[now];i!=-1;i=edge[i].pre) {
int to=edge[i].to;
current[now]=i;
if (dist[now]+1==dist[to]&&edge[i].flow>0&&
(f=dfs(to,min(flow,edge[i].flow),n))) {
edge[i].flow-=f;
edge[i^1].flow+=f;
return f;
}
}
return 0;
} int dinic(int n) {
int sum=0,f;
while (bfs(n)) {
memcpy(current,head,sizeof(head));
while (f=dfs(0,inf,n)) sum+=f;
}
return sum;
} int main() {
int cas;
scanf("%d",&cas);
while (cas--) {
int n,m,k,i,j,x,y,z;
memset(head,-1,sizeof(head));
num=0;
scanf("%d%d%d",&n,&m,&k);
for (i=1;i<=n;i++) {
scanf("%d",&a[i][1]);
addedge(0,(i-1)*m+1,1e7);
for (j=2;j<=m;j++) {
scanf("%d",&a[i][j]);
addedge((i-1)*m+j-1,(i-1)*m+j,1000-a[i][j-1]);
}
addedge(i*m,n*m+1,1000-a[i][m]);
}
for (i=1;i<=k;i++) {
scanf("%d%d%d",&x,&y,&z);
for (j=max(z+1,1);j<=m&&j-z<=m;j++) {
addedge((x-1)*m+j,(y-1)*m+j-z,1e7);
}
if (j-z>m&&j<=m)
addedge((x-1)*m+j,n*m+1,1e7);
}
int ans=dinic(n*m+1);
if (ans>1e7) printf("-1\n"); else printf("%d\n",n*1000-ans);
}
return 0; }

  

HDU 6126 Give out candies(网络流)的更多相关文章

  1. hdu 6126 Give out candies

    hdu 6126 Give out candies(最小割) 题意: 有\(n\)个小朋友,标号为\(1\)到\(n\),你要给每个小朋友至少\(1\)个且至多\(m\)个的糖果.小朋友们共提出\(k ...

  2. HDU 6126.Give out candies 最小割

    Give out candies Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  3. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  4. HDU 3338 Kakuro Extension (网络流,最大流)

    HDU 3338 Kakuro Extension (网络流,最大流) Description If you solved problem like this, forget it.Because y ...

  5. HDU 4280 Island Transport(网络流,最大流)

    HDU 4280 Island Transport(网络流,最大流) Description In the vast waters far far away, there are many islan ...

  6. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  7. HDU 6085 - Rikka with Candies | 2017 Multi-University Training Contest 5

    看了标程的压位,才知道压位也能很容易写- - /* HDU 6085 - Rikka with Candies [ 压位 ] | 2017 Multi-University Training Cont ...

  8. 【HDU 6126】Give out candies 最小割

    题意 有$n​$个小朋友,给每个人分$1~m​$个糖果,有k个限制 限制形如$(x,y,z)​$ 表示第$x​$个人分到的糖数减去第$y​$个人分到的糖数不大于$z​$,给第$i​$个人$j​$颗糖获 ...

  9. HDU 4888 Redraw Beautiful Drawings 网络流 建图

    题意: 给定n, m, k 以下n个整数 a[n] 以下m个整数 b[n] 用数字[0,k]构造一个n*m的矩阵 若有唯一解则输出这个矩阵.若有多解输出Not Unique,若无解输出Impossib ...

随机推荐

  1. Multiarmed Bandit Algorithm在股票中的应用

    股票与Bandit Machine看起来相去甚远,但实际上通过限制买入和卖出的行为,股票可以转换为Bandit Machine,比如:规定股票必须在买入一天以后卖出.为什么要大费周折地把股票变成Ban ...

  2. 动手动脑 4 String 类

    动手动脑1: 请运行以下示例代码StringPool.java,查看其输出结果.如何解释这样的输出结果?从中你能总结出什么?       在Java中,内容相同的字串常量(“Hello”)只保存一份以 ...

  3. MYSQL安装与基本操作

    http://docs.sqlalchemy.org/en/latest/    sqlalchemy文档 1.下载,下载版本太多,不知道下哪个好,别人介绍版本 进入官网-->点击最下面 DOW ...

  4. linux 下shell 编写脚本

    linux 下shell 编写脚本: 1.程序结构练习:编写一个脚本,给定一个正整数,计算出这个数所有位的数字之和. 例如:程序给定输入123,那么应该返回1+2+3=6. 2.程序结构练习:编写一个 ...

  5. jenkins忘记登录密码解决方法

    第一步:修改配置文件 修改jenkins的配置文件,找到如下几行删除(删除前一定要备份) <useSecurity>true</useSecurity> <authori ...

  6. docker 批量命令

    docker中 启动所有的容器命令: docker start $(docker ps -a | awk '{ print $1}' | tail -n +2) docker中    关闭所有的容器命 ...

  7. [题解] 洛谷P3950 部落冲突

    传送门 拿到题目,一看 裸LCT (其实是我懒得打,splay又臭又长) 首先,这道题的意思就是删掉一些边 所以常规操作 点权转边权 之后对于战争操作,在对应的边上+1 对于和平操作,在对应的边上-1 ...

  8. Python—异步任务队列Celery简单使用

    一.Celery简介 Celery是一个简单,灵活,可靠的分布式系统,用于处理大量消息,同时为操作提供维护此类系统所需的工具.它是一个任务队列,专注于实时处理,同时还支持任务调度. 中间人boker: ...

  9. 云托管,边缘物理计算&托管物理计算,你所需要了解的……

    随着业务发展,传统数据中心建设复杂性越来越高,基建的管理.设备的繁杂.人力成本的提升,是否让你的运维成本越来越高?企业生产效率却越来越低? 业务快速发展,设备采购周期冗长,大量采购造成CAPEX过重, ...

  10. 吴裕雄--天生自然 PYTHON3开发学习:元组

    tup1 = ('Google', 'Runoob', 1997, 2000) tup2 = (1, 2, 3, 4, 5, 6, 7 ) print ("tup1[0]: ", ...