PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node difer by at most one; if at any time they difer by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<= 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print “YES” if the tree is complete, or “NO” if not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
题目分析
已知平衡二叉树的建树序列,求二叉平衡树的层序序列,并判断是否是完全二叉树
解题思路
- 平衡二叉树建树(左右旋)
- 判断是否是二叉树
思路1:记录每个节点的index,根节点index=i,左子节点index=2i+1,右子节点index=2i+2。判断最后一个节点的index==n-1,相等即为完全二叉树
思路2:出现过NULL值后,若不再出现非NULL节点,即为完全二叉树
Code
Code 01
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
struct node {
int data;
int heigh=0;
int index=-1;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {
heigh=1;
}
};
int getHeigh(node * root) {
if(root==NULL)return 0;
else return root->heigh;
}
int getBalanceFactor(node * root) {
return getHeigh(root->left)-getHeigh(root->right);
}
void updateHeigh(node * root) {
root->heigh=max(getHeigh(root->left),getHeigh(root->right))+1;
}
void L(node * &root) {
node * temp=root->right;
root->right=temp->left;
temp->left = root;
updateHeigh(root);
updateHeigh(temp);
root=temp;
}
void R(node * &root) {
node * temp=root->left;
root->left=temp->right;
temp->right=root;
updateHeigh(root);
updateHeigh(temp);
root = temp;
}
void insert(node * &root, int val) {
if(root==NULL) {
root=new node(val);
return;
}
if(val<root->data) {
insert(root->left,val);
updateHeigh(root);
if(getBalanceFactor(root)==2) {
if(getBalanceFactor(root->left)==1) {
R(root);
} else if (getBalanceFactor(root->left)==-1) {
L(root->left);
R(root);
}
}
} else {
insert(root->right,val);
updateHeigh(root);
if(getBalanceFactor(root)==-2) {
if(getBalanceFactor(root->right)==-1) {
L(root);
} else if (getBalanceFactor(root->right)==1) {
R(root->right);
L(root);
}
}
}
}
vector<node*>nds;
/*
思路一:使用index判断是否完全二叉树
*/
//void levelOrder(node * root){
// queue<node*> q;
// root->index = 0;
// q.push(root);
// while(!q.empty()){
// node * now = q.front();
// q.pop();
// nds.push_back(now);
// if(now->left!=NULL){
// now->left->index=now->index*2+1;
// q.push(now->left);
// }
// if(now->right!=NULL){
// now->right->index=now->index*2+2;
// q.push(now->right);
// }
// }
//}
/*
思路二:出现NULL后不再出现非NULL节点即为完全二叉树
*/
int isComplete = 1, after = 0;
void levelOrder(node *tree) {
queue<node *> queue;
queue.push(tree);
while (!queue.empty()) {
node *temp = queue.front();
queue.pop();
nds.push_back(temp);
if (temp->left != NULL) {
if (after) isComplete = 0;
queue.push(temp->left);
} else {
after = 1;
}
if (temp->right != NULL) {
if (after) isComplete = 0;
queue.push(temp->right);
} else {
after = 1;
}
}
}
bool cmp(node * &n1,node * &n2) {
return n1->index<n2->index;
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
node * root=NULL;
for(int i=0; i<n; i++) {
scanf("%d",&m);
insert(root,m);
}
levelOrder(root);
for(int i=0; i<nds.size(); i++) {
printf("%d",nds[i]->data);
if(i!=nds.size()-1)printf(" ");
else printf("\n");
}
// 思路一:使用index判断是否完全二叉树
// if(nds[n-1]->index==n-1) printf("YES");
// else printf("NO");
// 思路二:出现NULL后不再出现非NULL节点即为完全二叉树
if(isComplete) printf("YES");
else printf("NO");
return 0;
}
PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]的更多相关文章
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT 1123. Is It a Complete AVL Tree (30)
AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...
- PAT甲级题解-1066. Root of AVL Tree (25)-AVL树模板题
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6803291.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- PAT (Advanced Level) 1115. Counting Nodes in a BST (30)
简单题.统计一下即可. #include<cstdio> #include<cstring> #include<cmath> #include<vector& ...
随机推荐
- POJ 3090 欧拉函数
求一个平面内可见的点,其实就是坐标互质即可,很容易看出来或者证明 所以求对应的欧拉函数即可 #include <iostream> #include <cstdio> #inc ...
- java 图片上传
代码是最有力量的,嘎嘎 @CrossOrigin@ApiOperation(value = "上传图片", notes = "上传图片", httpMethod ...
- Oracle 中启用 scott 用户 的方法
解锁scott: SQL> alter user scott account unlock 修改密码: SQL> alter user scott identified by tiger ...
- P1050 螺旋矩阵
P1050 螺旋矩阵 转跳点:
- scala文件通过本地命令运行
1.准备(检查) a.本地环境安装jdk b.安装scala 2.sublime编辑scala文件,并存放到F:\plan_next\scala_compile下 3.文件目录中切换到cmd中(文件目 ...
- 指令——mkdir
一个完整的指令的标准格式: Linux通用的格式——#指令主体(空格) [选项](空格) [操作对象] 一个指令可以包含多个选项,操作对象也可以是多个 指令mkdir——(make directory ...
- 洛谷[Luogu] 普及村-简单的模拟总结
题目列表 注明:Level值代表在本难度下的排行.(纯粹本蒟蒻主观评判)注明:Level值代表在本难度下的排行.(纯粹本蒟蒻主观评判)注明:Level值代表在本难度下的排行.(纯粹本蒟蒻主观评判) P ...
- 132-PHP子类和父类同名函数的调用
<?php class father{ //定义father类 public function cook(){ return '烹饪'; } } class son extends father ...
- 腾讯云服务器上搭建 2.176.3-1.1 版本的Jenkins,jdk 11
[root@VM_0_12_centos fonts]# cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) [root@VM_0 ...
- 配置mysql时报错
配置mysql时无法启动此程序,因为计算机丢失MSVCR100.dll. 去https://cn.dll-files.com/下载相应的版本 复制MSVCR100.dll 粘贴到下面 32位系统: 复 ...