Fishnet
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 1921   Accepted: 1234

Description

A fisherman named Etadokah awoke in a very small island. He could see calm, beautiful and blue sea around the island. The previous night he had encountered a terrible storm and had reached this uninhabited island. Some wrecks of his ship were spread around
him. He found a square wood-frame and a long thread among the wrecks. He had to survive in this island until someone came and saved him. 



In order to catch fish, he began to make a kind of fishnet by cutting the long thread into short threads and fixing them at pegs on the square wood-frame. He wanted to know the sizes of the meshes of the fishnet to see whether he could catch small fish as well
as large ones. 



The wood frame is perfectly square with four thin edges on meter long: a bottom edge, a top edge, a left edge, and a right edge. There are n pegs on each edge, and thus there are 4n pegs in total. The positions of pegs are represented by their (x,y)-coordinates.
Those of an example case with n=2 are depicted in figures below. The position of the ith peg on the bottom edge is represented by (ai,0). That on the top edge, on the left edge and on the right edge are represented by (bi,1), (0,ci) and (1,di), respectively.
The long thread is cut into 2n threads with appropriate lengths. The threads are strained between (ai,0) and (bi,1),and between (0,ci) and (1,di) (i=1,...,n). 



You should write a program that reports the size of the largest mesh among the (n+1)2 meshes of the fishnet made by fixing the threads at the pegs. You may assume that the thread he found is long enough to make the fishnet and the wood-frame is thin enough
for neglecting its thickness. 

 

Input

The input consists of multiple sub-problems followed by a line containing a zero that indicates the end of input. Each sub-problem is given in the following format. 



a1 a2 ... an 

b1 b2 ... bn 

c1 c2 ... cn 

d1 d2 ... dn 

you may assume 0 < n <= 30, 0 < ai,bi,ci,di < 1

Output

For each sub-problem, the size of the largest mesh should be printed followed by a new line. Each value should be represented by 6 digits after the decimal point, and it may not have an error greater than 0.000001.

Sample Input

2
0.2000000 0.6000000
0.3000000 0.8000000
0.1000000 0.5000000
0.5000000 0.6000000
2
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
4
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
2
0.5138701 0.9476283
0.1717362 0.1757412
0.3086521 0.7022313
0.2264312 0.5345343
1
0.4000000
0.6000000
0.3000000
0.5000000
0

Sample Output

0.215657
0.111112
0.078923
0.279223
0.348958

题意是一张正方形的渔网,在上下左右四个边上都有n个点,上下边点对点对应连线,左右边点对点对应连线,然后这些连线会形成诸多四边形,问这些四边形中最大的面积是多少。

首先计算这些连线中间的交点,然后对每一个四边形求面积。求面积的方法是将四边形划成两个三角形,三角形的面积是用叉积/2来求。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#include <iomanip>
#pragma warning(disable:4996)
using namespace std; struct node
{
double x, y;
}point[35][35]; double xmult(node a, node b, node c)
{
return (a.x - c.x)*(b.y - c.y) - (b.x - c.x)*(a.y - c.y);
}
void init(int n)
{
point[0][0].x = 0.0;
point[0][0].y = 0.0; point[0][n + 1].x = 1.0;
point[0][n + 1].y = 0.0; point[n + 1][0].x = 0.0;
point[n + 1][0].y = 1.0; point[n + 1][n + 1].x = 1.0;
point[n + 1][n + 1].y = 1.0;
} node intersection(node a,node b,node c,node d)//ab与cd直线的交点
{
node temp = a;
double t = ((a.x - c.x)*(c.y - d.y) - (a.y - c.y)*(c.x - d.x)) / ((a.x - b.x)*(c.y - d.y) - (a.y - b.y)*(c.x - d.x)); temp.x += (b.x - a.x)*t;
temp.y += (b.y - a.y)*t; return temp;
} int main()
{
int n, i, j;
while (cin >> n)
{
if (!n)
break;
double maxn = 0.0, res;
init(n); for (i = 1; i <= n; i++)
{
cin >> point[0][i].x;
point[0][i].y = 0.0;
} for (i = 1; i <= n; i++)
{
cin >> point[n + 1][i].x;
point[n + 1][i].y = 1.0;
} for (i = 1; i <= n; i++)
{
cin >> point[i][0].y;
point[i][0].x = 0.0;
} for (i = 1; i <= n; i++)
{
cin >> point[i][n + 1].y;
point[i][n + 1].x = 1.0;
} for (j = 1; j <= n; j++)
{
for (i = 1; i <= n ; i++)
{
point[i][j] = intersection(point[0][j], point[n + 1][j], point[i][0], point[i][n + 1]);
}
} for (i = 1; i <= n + 1; i++)
{
for (j = 1; j <= n + 1; j++)
{
res = fabs(xmult(point[i - 1][j - 1], point[i][j], point[i][j - 1]));
res += fabs(xmult(point[i - 1][j - 1], point[i][j], point[i - 1][j])); res /= 2;
maxn = max(res, maxn);
}
}
cout << fixed << setprecision(6) << maxn << endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1408:Fishnet的更多相关文章

  1. hdu 1284 关于钱币兑换的一系列问题 九度oj 题目1408:吃豆机器人

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)

    http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...

  3. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  4. POJ 1408 Fishnet【枚举+线段相交+叉积求面积】

    题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. Fishnet(暴力POJ 1408)

    Fishnet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1911   Accepted: 1227 Descripti ...

  6. POJ 1459:Power Network(最大流)

    http://poj.org/problem?id=1459 题意:有np个发电站,nc个消费者,m条边,边有容量限制,发电站有产能上限,消费者有需求上限问最大流量. 思路:S和发电站相连,边权是产能 ...

  7. POJ 3436:ACM Computer Factory(最大流记录路径)

    http://poj.org/problem?id=3436 题意:题意很难懂.给出P N.接下来N行代表N个机器,每一行有2*P+1个数字 第一个数代表容量,第2~P+1个数代表输入,第P+2到2* ...

  8. POJ 2195:Going Home(最小费用最大流)

    http://poj.org/problem?id=2195 题意:有一个地图里面有N个人和N个家,每走一格的花费是1,问让这N个人分别到这N个家的最小花费是多少. 思路:通过这个题目学了最小费用最大 ...

  9. POJ 3281:Dining(最大流)

    http://poj.org/problem?id=3281 题意:有n头牛,f种食物,d种饮料,每头牛有fnum种喜欢的食物,dnum种喜欢的饮料,每种食物如果给一头牛吃了,那么另一个牛就不能吃这种 ...

随机推荐

  1. [排错] VO对象和POJO对象的关系

    这或许是一个很蠢的笔记吧...... 这次项目中, 作为一个新人, 没少被这两个概念虐得死去活来的, 现在特别做一次记录, 关于它们二者之间在项目中的应用. 在这里呢, 就不再赘述 VO(view o ...

  2. save the transient instance before flushing错误解决办法

    错误原因: new了一个新对象,在未保存之前将它保存进了一个新new的对象(也即不是持久态). 解决办法: 在保存或更新之前把这个对象查出来(这样就是一个持久态) <set name=" ...

  3. Android之系统自带的文字外观设置及实际显示效果图

     android:textAppearance xml布局里面设置文字的外观: 如“android:textAppearance=“?android:attr/textAppearanceLargeI ...

  4. 嵊州普及Day4T4

    题意:求最长上升序列长度和方案数. 思路:经典DP,不需什么别的东西,加一个数组储蓄程序数即可,原题300000可能N2会有问题,但问题不大. 见代码: #include<iostream> ...

  5. 写给java web一年左右工作经验的人

      摘要 大学就开始学习web,磕磕绊绊一路走过来,当中得到过开源社区很多的帮助,总结了这些年来的技术积累,回馈给开源社区. ps:图片都是从网上盗...感谢原作者. ps:文字千真万确都是我自己写的 ...

  6. 动态指定日志路径(logback)

    实现日志上下文监听,添加路径变量 package com.x.x.x.listener; import ch.qos.logback.classic.Level; import ch.qos.logb ...

  7. docker 运行ubuntu镜像 apt-get update 问题

    docker运行ubuntu镜像后,apt-getupdate出现问题如下: 根据上面的报错大概是因为....文件上没有生效(生效还需要10d 13h 33min 45s),看来是时间不够啊,需要等待 ...

  8. R 读取回归模型的信息

    参考博客: http://blog.sina.com.cn/s/blog_8f5b2a2e0101fmiq.html https://blog.csdn.net/huangyouyu523/artic ...

  9. NIO 与 零拷贝

    零拷贝介绍 零拷贝是网络编程的关键, 很多性能优化都需要零拷贝. 在 Java程序中, 常用的零拷贝方式有m(memory)map[内存映射] 和 sendFile.它们在OS中又是怎样的设计? NI ...

  10. 腾讯X5内核使用详解(X5内核播放器使用如何去除控制栏全屏播放)以及一些注意事项

    例子下载地址 https://www.lanzous.com/i2zsv5g      GIT就不用了麻烦的不行 本人安卓刚学 就上X5内核弄了老长时间由于对maven 和idea不熟悉刚开始导包都是 ...