Fishnet
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 1921   Accepted: 1234

Description

A fisherman named Etadokah awoke in a very small island. He could see calm, beautiful and blue sea around the island. The previous night he had encountered a terrible storm and had reached this uninhabited island. Some wrecks of his ship were spread around
him. He found a square wood-frame and a long thread among the wrecks. He had to survive in this island until someone came and saved him. 



In order to catch fish, he began to make a kind of fishnet by cutting the long thread into short threads and fixing them at pegs on the square wood-frame. He wanted to know the sizes of the meshes of the fishnet to see whether he could catch small fish as well
as large ones. 



The wood frame is perfectly square with four thin edges on meter long: a bottom edge, a top edge, a left edge, and a right edge. There are n pegs on each edge, and thus there are 4n pegs in total. The positions of pegs are represented by their (x,y)-coordinates.
Those of an example case with n=2 are depicted in figures below. The position of the ith peg on the bottom edge is represented by (ai,0). That on the top edge, on the left edge and on the right edge are represented by (bi,1), (0,ci) and (1,di), respectively.
The long thread is cut into 2n threads with appropriate lengths. The threads are strained between (ai,0) and (bi,1),and between (0,ci) and (1,di) (i=1,...,n). 



You should write a program that reports the size of the largest mesh among the (n+1)2 meshes of the fishnet made by fixing the threads at the pegs. You may assume that the thread he found is long enough to make the fishnet and the wood-frame is thin enough
for neglecting its thickness. 

 

Input

The input consists of multiple sub-problems followed by a line containing a zero that indicates the end of input. Each sub-problem is given in the following format. 



a1 a2 ... an 

b1 b2 ... bn 

c1 c2 ... cn 

d1 d2 ... dn 

you may assume 0 < n <= 30, 0 < ai,bi,ci,di < 1

Output

For each sub-problem, the size of the largest mesh should be printed followed by a new line. Each value should be represented by 6 digits after the decimal point, and it may not have an error greater than 0.000001.

Sample Input

2
0.2000000 0.6000000
0.3000000 0.8000000
0.1000000 0.5000000
0.5000000 0.6000000
2
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
4
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
2
0.5138701 0.9476283
0.1717362 0.1757412
0.3086521 0.7022313
0.2264312 0.5345343
1
0.4000000
0.6000000
0.3000000
0.5000000
0

Sample Output

0.215657
0.111112
0.078923
0.279223
0.348958

题意是一张正方形的渔网,在上下左右四个边上都有n个点,上下边点对点对应连线,左右边点对点对应连线,然后这些连线会形成诸多四边形,问这些四边形中最大的面积是多少。

首先计算这些连线中间的交点,然后对每一个四边形求面积。求面积的方法是将四边形划成两个三角形,三角形的面积是用叉积/2来求。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#include <iomanip>
#pragma warning(disable:4996)
using namespace std; struct node
{
double x, y;
}point[35][35]; double xmult(node a, node b, node c)
{
return (a.x - c.x)*(b.y - c.y) - (b.x - c.x)*(a.y - c.y);
}
void init(int n)
{
point[0][0].x = 0.0;
point[0][0].y = 0.0; point[0][n + 1].x = 1.0;
point[0][n + 1].y = 0.0; point[n + 1][0].x = 0.0;
point[n + 1][0].y = 1.0; point[n + 1][n + 1].x = 1.0;
point[n + 1][n + 1].y = 1.0;
} node intersection(node a,node b,node c,node d)//ab与cd直线的交点
{
node temp = a;
double t = ((a.x - c.x)*(c.y - d.y) - (a.y - c.y)*(c.x - d.x)) / ((a.x - b.x)*(c.y - d.y) - (a.y - b.y)*(c.x - d.x)); temp.x += (b.x - a.x)*t;
temp.y += (b.y - a.y)*t; return temp;
} int main()
{
int n, i, j;
while (cin >> n)
{
if (!n)
break;
double maxn = 0.0, res;
init(n); for (i = 1; i <= n; i++)
{
cin >> point[0][i].x;
point[0][i].y = 0.0;
} for (i = 1; i <= n; i++)
{
cin >> point[n + 1][i].x;
point[n + 1][i].y = 1.0;
} for (i = 1; i <= n; i++)
{
cin >> point[i][0].y;
point[i][0].x = 0.0;
} for (i = 1; i <= n; i++)
{
cin >> point[i][n + 1].y;
point[i][n + 1].x = 1.0;
} for (j = 1; j <= n; j++)
{
for (i = 1; i <= n ; i++)
{
point[i][j] = intersection(point[0][j], point[n + 1][j], point[i][0], point[i][n + 1]);
}
} for (i = 1; i <= n + 1; i++)
{
for (j = 1; j <= n + 1; j++)
{
res = fabs(xmult(point[i - 1][j - 1], point[i][j], point[i][j - 1]));
res += fabs(xmult(point[i - 1][j - 1], point[i][j], point[i - 1][j])); res /= 2;
maxn = max(res, maxn);
}
}
cout << fixed << setprecision(6) << maxn << endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1408:Fishnet的更多相关文章

  1. hdu 1284 关于钱币兑换的一系列问题 九度oj 题目1408:吃豆机器人

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)

    http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...

  3. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  4. POJ 1408 Fishnet【枚举+线段相交+叉积求面积】

    题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. Fishnet(暴力POJ 1408)

    Fishnet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1911   Accepted: 1227 Descripti ...

  6. POJ 1459:Power Network(最大流)

    http://poj.org/problem?id=1459 题意:有np个发电站,nc个消费者,m条边,边有容量限制,发电站有产能上限,消费者有需求上限问最大流量. 思路:S和发电站相连,边权是产能 ...

  7. POJ 3436:ACM Computer Factory(最大流记录路径)

    http://poj.org/problem?id=3436 题意:题意很难懂.给出P N.接下来N行代表N个机器,每一行有2*P+1个数字 第一个数代表容量,第2~P+1个数代表输入,第P+2到2* ...

  8. POJ 2195:Going Home(最小费用最大流)

    http://poj.org/problem?id=2195 题意:有一个地图里面有N个人和N个家,每走一格的花费是1,问让这N个人分别到这N个家的最小花费是多少. 思路:通过这个题目学了最小费用最大 ...

  9. POJ 3281:Dining(最大流)

    http://poj.org/problem?id=3281 题意:有n头牛,f种食物,d种饮料,每头牛有fnum种喜欢的食物,dnum种喜欢的饮料,每种食物如果给一头牛吃了,那么另一个牛就不能吃这种 ...

随机推荐

  1. GoJS组织结构图2

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. tomcat#结构

    下面是一个tomcat的配置文件,通过分析tomcat配置文件的结构,和相关注释,可以大致了解tomcat的结构 <?xml version="1.0" encoding=& ...

  3. Linux安装nginx的环境要求

    # Linux下切记不能乱删东西!我把pcre强制删除后,什么命令都不能使用了,系统奔溃,血的教训! nginx是C语言开发,建议在linux上运行,本教程使用Centos6.4作为安装环境. 一.  ...

  4. Sqlserver 基本面试题

    一 单词解释(2分/个) 34分 Data 数据 Database 数据库 RDBMS 关系数据库管理系统 GRANT 授权 REVOKE 取消权限 DENY 拒绝权限 DECLARE 定义变量 PR ...

  5. 梯度下降法的python代码实现(多元线性回归)

    梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...

  6. Django-路由Routers-SimpleRouter-DefaultRouter使用方法

    路由Routers 对于视图集ViewSet,我们除了可以自己手动指明请求方式与动作action之间的对应关系外,还可以使用Routers来帮助我们快速实现路由信息. REST framework提供 ...

  7. 实验吧——Recursive

    环境:win10,kali虚拟机 工具:ida 虚拟机打开看看,发现是ELF文件,运行一下,额没有什么发现. Ida打开看看,发现是在文件内部运行python解释器,百度搜索了一个基本上可以找到Py_ ...

  8. Compile-kernel-module

    Compile-kernel-module 1. 内核模块编程1.1 简介1.2 加载内核模块1.3 最简单的模块1.4 模块必要信息1.4.1 内核模块必须至少包含的头文件:1.4.2 内核模块必须 ...

  9. SpringAOP源码跟踪及学习

    Spring 版本 4.3.2 在拿到 Bean 实例以后,会经历一系列的初始化工作,如:工厂回调.init 方法.后处理器在 Bean 初始化前后的处理等,在一般情况下(非 factory-meth ...

  10. NIO 与 零拷贝

    零拷贝介绍 零拷贝是网络编程的关键, 很多性能优化都需要零拷贝. 在 Java程序中, 常用的零拷贝方式有m(memory)map[内存映射] 和 sendFile.它们在OS中又是怎样的设计? NI ...