tensorflow2.0学习笔记第一章第二节
1.2常用函数
本节目标:掌握在建立和操作神经网络过程中常用的函数
# 常用函数 import tensorflow as tf
import numpy as np # 强制Tensor的数据类型转换
x1 = tf.constant([1,2,3],dtype = tf.float64)
print(x1)
x2 = tf.cast(x1,tf.int32)
print(x2)
# 计算张量中最小的元素
print(tf.reduce_min(x2))
# 计算张量中最大的元素
print(tf.reduce_max(x2))
输出结果:
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
# 理解axis,在一个二位张量或者数组中,可以通过调整axis等于0或者1控制执行维度
# axis=0代表跨行(经度,down),而axis=1跨列(纬度,across)
# 不指定axis,则所有元素参与计算
x = tf.constant([[1,2,3],
[4,5,6]])
print(x)
print(tf.reduce_mean(x)) # 求平均[2,5],平均为3
print(tf.reduce_sum(x,axis = 1)) # 求总和按行操作
输出结果:
tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor([ 6 15], shape=(2,), dtype=int32)
# tf.Variable()将变量标记为可训练,被标记的变量会在反向传播中被记录梯度信息
w = tf.Variable(tf.random.normal([2,2],mean= 0,stddev =1))
print(w)
输出结果:
<tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy=
array([[ 0.47072804, -0.7259878 ],
[-1.6562318 , 0.15564619]], dtype=float32)>
# 常用的运算函数
# 加法
a = tf.constant([1,2,3],dtype = tf.float32)
b = tf.constant([4,5,6],dtype = tf.float32)
print(tf.add(a,b))
# 减法
print(tf.subtract(a,b))
# 乘法
print(tf.multiply(a,b))
# 除法
print(tf.divide(b,a))
# 平方
print(tf.square(a))
# 次方
print(tf.pow(a,3))
# 开放
print(tf.sqrt(a))
# 矩阵乘法
c = tf.ones([3,2])
d = tf.fill([2,3],6.)
print(tf.matmul(c,d))
输出结果:
tf.Tensor([5. 7. 9.], shape=(3,), dtype=float32)
tf.Tensor([-3. -3. -3.], shape=(3,), dtype=float32)
tf.Tensor([ 4. 10. 18.], shape=(3,), dtype=float32)
tf.Tensor([4. 2.5 2. ], shape=(3,), dtype=float32)
tf.Tensor([1. 4. 9.], shape=(3,), dtype=float32)
tf.Tensor([ 1. 8. 27.], shape=(3,), dtype=float32)
tf.Tensor([1. 1.4142135 1.7320508], shape=(3,), dtype=float32)
tf.Tensor(
[[12. 12. 12.]
[12. 12. 12.]
[12. 12. 12.]], shape=(3, 3), dtype=float32)
# 切分传入张量的第一维度,生成输入特征/标签配对,构成数据集
features = tf.constant([12,23,10,17])
labels = tf.constant([0,1,1,0])
# 对特征和标签进行一一配对
dataset = tf.data.Dataset.from_tensor_slices((features,labels))
print(dataset)
for element in dataset:
print(element)
输出结果:
<TensorSliceDataset shapes: ((), ()), types: (tf.int32, tf.int32)>
(<tf.Tensor: id=286, shape=(), dtype=int32, numpy=12>, <tf.Tensor: id=287, shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: id=288, shape=(), dtype=int32, numpy=23>, <tf.Tensor: id=289, shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: id=290, shape=(), dtype=int32, numpy=10>, <tf.Tensor: id=291, shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: id=292, shape=(), dtype=int32, numpy=17>, <tf.Tensor: id=293, shape=(), dtype=int32, numpy=0>)
# 求导数运算
with tf.GradientTape() as tape:
w= tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
# 对w2求w的倒数
grad = tape.gradient(loss,w)
print(grad)
输出结果:
tf.Tensor(6.0, shape=(), dtype=float32)
# 求导数运算
with tf.GradientTape() as tape:
w= tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
# 对w2求w的倒数
grad = tape.gradient(loss,w)
print(grad)
输出结果:
0 one
1 two
2 three
# 独热编码:将张量中的每个元素按照规律独立编码,编码中0为否1为是
labels = tf.constant([0,1,2,3])
classes = 4
output = tf.one_hot(labels,depth = classes)
print(output)
输出结果:
tf.Tensor(
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
# 用softmax函数使得输出符合概率分布,将输出用e为底y为指数,求出每个输出的概率
# 对概率进行归一化操作
y = tf.constant([1.01,2.01,-0.66])
y_pro = tf.nn.softmax(y)
print("After softmax,y_pro is:",y_pro)
输出结果:
After softmax,y_pro is: tf.Tensor([0.25598174 0.69583046 0.0481878 ], shape=(3,), dtype=float32)
# 用assign_sub函数对参数进行自更新,赋值操作(更新参数为可训练)
w = tf.Variable(4)
# 对w进行自减一操作w = w -1
w.assign_sub(1)
print(w)
输出结果:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>
# 返回张量沿指定维度最大值的索引
test = np.array([[1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]])
print(test)
print(tf.argmax(test,axis = 0))
print(tf.argmax(test,axis = 1)) # 判断两个数是否相等,bool类型
correct = tf.equal(1,1)
print(correct)
输出结果:
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
tf.Tensor([3 3 3], shape=(3,), dtype=int64)
tf.Tensor([2 2 2 2], shape=(4,), dtype=int64)
tf.Tensor(True, shape=(), dtype=bool) 本节对各个函数运用,对神经网络搭建和操作十分重要,请大家务必掌握。
tensorflow2.0学习笔记第一章第二节的更多相关文章
- tensorflow2.0学习笔记第一章第一节
一.简单的神经网络实现过程 1.1张量的生成 # 创建一个张量 #tf.constant(张量内容,dtpye=数据类型(可选)) import tensorflow as tf import num ...
- tensorflow2.0学习笔记第一章第四节
1.4神经网络实现鸢尾花分类 import tensorflow as tf from sklearn import datasets import pandas as pd import numpy ...
- tensorflow2.0学习笔记第一章第五节
1.5简单神经网络实现过程全览
- tensorflow2.0学习笔记第一章第三节
1.3鸢尾花数据读入 # 从sklearn包datasets读入数据 from sklearn import datasets from pandas import DataFrame import ...
- PRML学习笔记第一章
[转] PRML笔记 - 1.1介绍 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等. 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型 ...
- Java 学习笔记 第一章:Java语言开发环境搭建
第一章:Java语言开发环境搭建 第二章:常量.变量和数据类型 第三章:数据类型转换.运算符和方法入门 1.Java虚拟机——JVM JVM(Java Virtual Machine ):Java虚拟 ...
- C语言学习笔记第一章——开篇
本文章B站有对应视频 (本文图片.部分文字引用c primer plus) 什么是C语言 顾名思义,c语言是一门语言,但是和我们所讲的话不同,它是一门编程语言,是为了让机器可以听懂人的意思所以编写的一 ...
- Java学习笔记 第一章 入门<转>
第一章 JAVA入门 一.基础常识 1.软件开发 什么是软件? 软件:一系列按照特定顺序组织的计算机数据和指令的集合 系统软件:DOS,Windows,Linux 应用软件:扫雷.QQ.迅雷 什么是开 ...
- c#高级编程第七版 学习笔记 第一章 .NET体系结构
第一章 .NET体系结构 本章内容: 编译和运行面向.NET的代码 Microsoft中间语言(Microsoft Intermediate Language,MSIL或简称IL)的优点 值 ...
随机推荐
- loadrunner Error -27985问题
错误提示:Error -27985: There is no context for HTML-based functions. A previous function may not have us ...
- css多行省略和单行省略
实现文本省略: <!-- html代码 --> <p class="single">该文的主题思想即对自由境界的向往.朱自清当时虽置身在污浊黑暗的旧中国,但 ...
- 201771010120 苏浪浪 《面向对象程序设计(java)》第11周学习总结
实验十一 集合 1.实验目的与要求 (1) 掌握Vetor.Stack.Hashtable三个类的用途及常用API: (2) 了解java集合框架体系组成: (3) 掌握ArrayList.Lin ...
- 为什么说OC是运行时语言?什么是动态类型、动态绑定、动态加载?
转载:https://www.cnblogs.com/dxb123456/p/5525343.html 动态: 主要是将数据类型的确定由编译时,推迟到了运行时. 这个问题其实浅涉及到两个概念,运行时和 ...
- EventBus/EventQueue 再思考
EventBus/EventQueue 再思考 Intro 之前写过两篇文章,造轮子系列的 EventBus/EventQueue,回想起来觉得当前的想法有点问题,当时对 EvenStore 可能有点 ...
- Centos7 安装完以后安全配置
1.更新系统和补丁 我们的互联网是很不安全的,每天都有新的漏洞出现和修复,所以一定要更新.更新.更新, yum -y update 上面的命令是检查更新并安装,包括内核和软件,建议刚安装完就更新一次, ...
- Kubernetes学习笔记(六):使用ConfigMap和Secret配置应用程序
概述 本文的核心是:如何处理应用程序的数据配置. 配置应用程序可以使用以下几种途径: 向容器传递命令行参数 为每个容器配置环境变量 通过特殊的卷将配置文件挂载到容器中 向容器传递命令行参数 在Kube ...
- JSP+SSM+Mysql实现的图书馆预约占座管理系统
项目简介 项目来源于:https://gitee.com/gepanjiang/LibrarySeats 因原gitee仓库无数据库文件且存在水印,经过本人修改,现将该仓库重新上传至个人gitee仓库 ...
- [Objective-C] 015_Delegate(委托代理)
Delegate在iOS开发中随处可见,Delegate是一种功能强大的软件架构设计理念,它的功能是程序中一个对象代表另一个对象,或者一个对象与另外一个对象协同工作(如小明喜欢一个女孩如花,却苦于没有 ...
- fastjson漏洞利用备忘
预备知识: 起rmi服务 用marshalsec-0.0.3-SNAPSHOT-all.jar起一个rmi服务. java -cp marshalsec-0.0.3-SNAPSHOT-all.jar ...