1.2常用函数

本节目标:掌握在建立和操作神经网络过程中常用的函数

# 常用函数

import tensorflow as tf
import numpy as np # 强制Tensor的数据类型转换
x1 = tf.constant([1,2,3],dtype = tf.float64)
print(x1)
x2 = tf.cast(x1,tf.int32)
print(x2)
# 计算张量中最小的元素
print(tf.reduce_min(x2))
# 计算张量中最大的元素
print(tf.reduce_max(x2))
输出结果:
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
# 理解axis,在一个二位张量或者数组中,可以通过调整axis等于0或者1控制执行维度
# axis=0代表跨行(经度,down),而axis=1跨列(纬度,across)
# 不指定axis,则所有元素参与计算
x = tf.constant([[1,2,3],
[4,5,6]])
print(x)
print(tf.reduce_mean(x)) # 求平均[2,5],平均为3
print(tf.reduce_sum(x,axis = 1)) # 求总和按行操作
输出结果:
tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor([ 6 15], shape=(2,), dtype=int32)
# tf.Variable()将变量标记为可训练,被标记的变量会在反向传播中被记录梯度信息
w = tf.Variable(tf.random.normal([2,2],mean= 0,stddev =1))
print(w)
输出结果:
<tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy=
array([[ 0.47072804, -0.7259878 ],
[-1.6562318 , 0.15564619]], dtype=float32)>
# 常用的运算函数
# 加法
a = tf.constant([1,2,3],dtype = tf.float32)
b = tf.constant([4,5,6],dtype = tf.float32)
print(tf.add(a,b))
# 减法
print(tf.subtract(a,b))
# 乘法
print(tf.multiply(a,b))
# 除法
print(tf.divide(b,a))
# 平方
print(tf.square(a))
# 次方
print(tf.pow(a,3))
# 开放
print(tf.sqrt(a))
# 矩阵乘法
c = tf.ones([3,2])
d = tf.fill([2,3],6.)
print(tf.matmul(c,d))
输出结果:
tf.Tensor([5. 7. 9.], shape=(3,), dtype=float32)
tf.Tensor([-3. -3. -3.], shape=(3,), dtype=float32)
tf.Tensor([ 4. 10. 18.], shape=(3,), dtype=float32)
tf.Tensor([4. 2.5 2. ], shape=(3,), dtype=float32)
tf.Tensor([1. 4. 9.], shape=(3,), dtype=float32)
tf.Tensor([ 1. 8. 27.], shape=(3,), dtype=float32)
tf.Tensor([1. 1.4142135 1.7320508], shape=(3,), dtype=float32)
tf.Tensor(
[[12. 12. 12.]
[12. 12. 12.]
[12. 12. 12.]], shape=(3, 3), dtype=float32)  
# 切分传入张量的第一维度,生成输入特征/标签配对,构成数据集
features = tf.constant([12,23,10,17])
labels = tf.constant([0,1,1,0])
# 对特征和标签进行一一配对
dataset = tf.data.Dataset.from_tensor_slices((features,labels))
print(dataset)
for element in dataset:
print(element)
输出结果:
<TensorSliceDataset shapes: ((), ()), types: (tf.int32, tf.int32)>
(<tf.Tensor: id=286, shape=(), dtype=int32, numpy=12>, <tf.Tensor: id=287, shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: id=288, shape=(), dtype=int32, numpy=23>, <tf.Tensor: id=289, shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: id=290, shape=(), dtype=int32, numpy=10>, <tf.Tensor: id=291, shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: id=292, shape=(), dtype=int32, numpy=17>, <tf.Tensor: id=293, shape=(), dtype=int32, numpy=0>)
# 求导数运算
with tf.GradientTape() as tape:
w= tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
# 对w2求w的倒数
grad = tape.gradient(loss,w)
print(grad)
输出结果:
tf.Tensor(6.0, shape=(), dtype=float32)
# 求导数运算
with tf.GradientTape() as tape:
w= tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
# 对w2求w的倒数
grad = tape.gradient(loss,w)
print(grad)
输出结果:
0 one
1 two
2 three
# 独热编码:将张量中的每个元素按照规律独立编码,编码中0为否1为是
labels = tf.constant([0,1,2,3])
classes = 4
output = tf.one_hot(labels,depth = classes)
print(output)
输出结果:
tf.Tensor(
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
# 用softmax函数使得输出符合概率分布,将输出用e为底y为指数,求出每个输出的概率
# 对概率进行归一化操作
y = tf.constant([1.01,2.01,-0.66])
y_pro = tf.nn.softmax(y)
print("After softmax,y_pro is:",y_pro)
输出结果:
After softmax,y_pro is: tf.Tensor([0.25598174 0.69583046 0.0481878 ], shape=(3,), dtype=float32)
# 用assign_sub函数对参数进行自更新,赋值操作(更新参数为可训练)
w = tf.Variable(4)
# 对w进行自减一操作w = w -1
w.assign_sub(1)
print(w)
输出结果:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>

# 返回张量沿指定维度最大值的索引
test = np.array([[1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]])
print(test)
print(tf.argmax(test,axis = 0))
print(tf.argmax(test,axis = 1)) # 判断两个数是否相等,bool类型
correct = tf.equal(1,1)
print(correct)
输出结果:
[[ 1  2  3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
tf.Tensor([3 3 3], shape=(3,), dtype=int64)
tf.Tensor([2 2 2 2], shape=(4,), dtype=int64)
tf.Tensor(True, shape=(), dtype=bool) 本节对各个函数运用,对神经网络搭建和操作十分重要,请大家务必掌握。
												

tensorflow2.0学习笔记第一章第二节的更多相关文章

  1. tensorflow2.0学习笔记第一章第一节

    一.简单的神经网络实现过程 1.1张量的生成 # 创建一个张量 #tf.constant(张量内容,dtpye=数据类型(可选)) import tensorflow as tf import num ...

  2. tensorflow2.0学习笔记第一章第四节

    1.4神经网络实现鸢尾花分类 import tensorflow as tf from sklearn import datasets import pandas as pd import numpy ...

  3. tensorflow2.0学习笔记第一章第五节

    1.5简单神经网络实现过程全览

  4. tensorflow2.0学习笔记第一章第三节

    1.3鸢尾花数据读入 # 从sklearn包datasets读入数据 from sklearn import datasets from pandas import DataFrame import ...

  5. PRML学习笔记第一章

    [转] PRML笔记 - 1.1介绍 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等. 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型 ...

  6. Java 学习笔记 第一章:Java语言开发环境搭建

    第一章:Java语言开发环境搭建 第二章:常量.变量和数据类型 第三章:数据类型转换.运算符和方法入门 1.Java虚拟机——JVM JVM(Java Virtual Machine ):Java虚拟 ...

  7. C语言学习笔记第一章——开篇

    本文章B站有对应视频 (本文图片.部分文字引用c primer plus) 什么是C语言 顾名思义,c语言是一门语言,但是和我们所讲的话不同,它是一门编程语言,是为了让机器可以听懂人的意思所以编写的一 ...

  8. Java学习笔记 第一章 入门<转>

    第一章 JAVA入门 一.基础常识 1.软件开发 什么是软件? 软件:一系列按照特定顺序组织的计算机数据和指令的集合 系统软件:DOS,Windows,Linux 应用软件:扫雷.QQ.迅雷 什么是开 ...

  9. c#高级编程第七版 学习笔记 第一章 .NET体系结构

    第一章      .NET体系结构 本章内容: 编译和运行面向.NET的代码 Microsoft中间语言(Microsoft Intermediate Language,MSIL或简称IL)的优点 值 ...

随机推荐

  1. loadrunner Error -27985问题

    错误提示:Error -27985: There is no context for HTML-based functions. A previous function may not have us ...

  2. css多行省略和单行省略

    实现文本省略: <!-- html代码 --> <p class="single">该文的主题思想即对自由境界的向往.朱自清当时虽置身在污浊黑暗的旧中国,但 ...

  3. 201771010120 苏浪浪 《面向对象程序设计(java)》第11周学习总结

    实验十一   集合 1.实验目的与要求 (1) 掌握Vetor.Stack.Hashtable三个类的用途及常用API: (2) 了解java集合框架体系组成: (3) 掌握ArrayList.Lin ...

  4. 为什么说OC是运行时语言?什么是动态类型、动态绑定、动态加载?

    转载:https://www.cnblogs.com/dxb123456/p/5525343.html 动态: 主要是将数据类型的确定由编译时,推迟到了运行时. 这个问题其实浅涉及到两个概念,运行时和 ...

  5. EventBus/EventQueue 再思考

    EventBus/EventQueue 再思考 Intro 之前写过两篇文章,造轮子系列的 EventBus/EventQueue,回想起来觉得当前的想法有点问题,当时对 EvenStore 可能有点 ...

  6. Centos7 安装完以后安全配置

    1.更新系统和补丁 我们的互联网是很不安全的,每天都有新的漏洞出现和修复,所以一定要更新.更新.更新, yum -y update 上面的命令是检查更新并安装,包括内核和软件,建议刚安装完就更新一次, ...

  7. Kubernetes学习笔记(六):使用ConfigMap和Secret配置应用程序

    概述 本文的核心是:如何处理应用程序的数据配置. 配置应用程序可以使用以下几种途径: 向容器传递命令行参数 为每个容器配置环境变量 通过特殊的卷将配置文件挂载到容器中 向容器传递命令行参数 在Kube ...

  8. JSP+SSM+Mysql实现的图书馆预约占座管理系统

    项目简介 项目来源于:https://gitee.com/gepanjiang/LibrarySeats 因原gitee仓库无数据库文件且存在水印,经过本人修改,现将该仓库重新上传至个人gitee仓库 ...

  9. [Objective-C] 015_Delegate(委托代理)

    Delegate在iOS开发中随处可见,Delegate是一种功能强大的软件架构设计理念,它的功能是程序中一个对象代表另一个对象,或者一个对象与另外一个对象协同工作(如小明喜欢一个女孩如花,却苦于没有 ...

  10. fastjson漏洞利用备忘

    预备知识: 起rmi服务 用marshalsec-0.0.3-SNAPSHOT-all.jar起一个rmi服务. java -cp marshalsec-0.0.3-SNAPSHOT-all.jar ...