Multilayer Perceptron (MLP) for multi-class softmax classification:

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD # 生成随机数据
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy']) model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

https://keras.io/getting-started/sequential-model-guide/

更多教程:http://www.tensorflownews.com/

Keras 多层感知机 多类别的 softmax 分类模型代码的更多相关文章

  1. 【Keras案例学习】 多层感知机做手写字符分类(mnist_mlp )

    from __future__ import print_function # 导入numpy库, numpy是一个常用的科学计算库,优化矩阵的运算 import numpy as np np.ran ...

  2. keras多层感知机MLP

    肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import ...

  3. 多层感知机MLP的gluon版分类minist

    MLP_Gluon .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...

  4. (数据科学学习手札44)在Keras中训练多层感知机

    一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...

  5. 深度学习:多层感知机和异或问题(Pytorch实现)

    感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \ ...

  6. 动手学深度学习10- pytorch多层感知机从零实现

    多层感知机 定义模型的参数 定义激活函数 定义模型 定义损失函数 训练模型 小结 多层感知机 import torch import numpy as np import sys sys.path.a ...

  7. [ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机

    线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader ...

  8. TensorFlow实现多层感知机MINIST分类

    TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...

  9. Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理

    前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...

随机推荐

  1. 【原创】(三)Linux进程调度器-进程切换

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  2. C++走向远洋——22(项目一,三角形,类)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:sanjiaoxing.cpp * 作者:常轩 * 微信公众号: ...

  3. 操作系统-IO管理和磁盘调度

    I/O设备 IO设备的类型 分为三类:人机交互类外部设备:打印机.显示器.鼠标.键盘等等.这类设备数据交换速度相对较慢,通常是以字节为单位进行数据交换的 存储设备:用于存储程序和数据的设备,如磁盘.磁 ...

  4. 《OneForAll框架搭建之旅》前端篇:微前端架构设计(Vue)

    心之所向,勇往直前!记录开发过程中的那些小事,给自己加点经验值. 前言 作为一个.Net后端开发,在竞争愈加激烈的当下,掌握点前端配菜好像已经是家常便饭了. 刚好在工作的第5个年头,辞去小主管职务的我 ...

  5. 位运算基础(Uva 1590,Uva 509题解)

    逻辑运算 规则 符号 与 只有1 and 1 = 1,其他均为0 & 或 只有0 or 0 = 0,其他均为1 | 非 也就是取反 ~ 异或 相异为1相同为0 ^ 同或 相同为1相异为0,c中 ...

  6. 前端每日实战:149# 视频演示如何用纯 CSS 创作一个宝路薄荷糖的动画

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/oagrvz 可交互视频 此视频是可 ...

  7. 初窥构建之法——记2020BUAA软工个人博客作业

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任建) 这个作业的要求在哪里 个人博客作业 我在这个课程的目标是 完成一次完整的软件开发经历并以博客的方式记录开发过程的心得掌握 ...

  8. Yuchuan_Linux_C 编程之三 静态库的制作和使用

    一.整体大纲 二.静态库的制作 1)命名规则        lib + 库的名字 + .a        例如:libyuchuan.a2)制作步骤:        1). 生成对应的.o文件 -- ...

  9. VMware虚拟机从安装到激活再到创建虚拟机解决黑屏、卡、死机系列问题教程第二篇

    第二篇:在VMware中创建一个虚拟机(黑屏死机卡在最下面简单说一下你就懂了) 1.我们要打开我们已经安装好的VMware,然后点击创建新的虚拟机 2.然后选择自定义 3.下面这个默认,直接下一步 4 ...

  10. 基于@vue/cli 的构建项目(3.0)

    1.检测node的版本号 注意:1.Vue CLI需要Node.js的版本 8.9+(推荐8.11.0+) 所以在安装Vue CLI之前先看下node的版本 node -v 2.安装@vue/cli ...