Keras 多层感知机 多类别的 softmax 分类模型代码
Multilayer Perceptron (MLP) for multi-class softmax classification:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
# 生成随机数据
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
更多教程:http://www.tensorflownews.com/
Keras 多层感知机 多类别的 softmax 分类模型代码的更多相关文章
- 【Keras案例学习】 多层感知机做手写字符分类(mnist_mlp )
from __future__ import print_function # 导入numpy库, numpy是一个常用的科学计算库,优化矩阵的运算 import numpy as np np.ran ...
- keras多层感知机MLP
肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import ...
- 多层感知机MLP的gluon版分类minist
MLP_Gluon .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- (数据科学学习手札44)在Keras中训练多层感知机
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...
- 深度学习:多层感知机和异或问题(Pytorch实现)
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \ ...
- 动手学深度学习10- pytorch多层感知机从零实现
多层感知机 定义模型的参数 定义激活函数 定义模型 定义损失函数 训练模型 小结 多层感知机 import torch import numpy as np import sys sys.path.a ...
- [ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机
线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader ...
- TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
随机推荐
- C++走向远洋——33(静态成员的应用)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:time.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- nvm安装以及注意事项
nvm初衷:由于以后的开发工作可能会在多个Node版本中测试,而且Node的版本也比较多,所以需要这么款工具来管理 1. 下载:[nvm-windows](https://github.com/cor ...
- LeetCode--链表1-单链表
LeetCode--链表1-单链表 单链表模板 初始化 头部插入 尾部插入 删除节点 Index插入 Index返回对应的节点指针和val值 class MyLinkedList { private: ...
- linux安装国产数据库(金仓数据库,达梦数据库,南大通用数据库)
今天在公司做的任务是,在Linux的环境下安装三种数据库,结果一种数据库也没有安装好,首先遇到的问题是安装南大通用数据库遇到安装的第五步,就出现问题了,问题是Gbase SDK没有安装成功,以及Gba ...
- 重置gitlab管理员密码
gitlab web管理员登录密码忘记以后可以用如下方式修改密码(本演示系统为Linux-CentOS6.6): [root@localhost ~]# gitlab-rails console pr ...
- 差分放大电路的CMRR与输入电阻分析
分析了经典差分放大电路的共模抑制比CMRR与输入电阻RIN 1.经典差分放大电路 基于运放的经典差分放大电路在各模电教材中均能找到,利用分离电阻和运算放大器实现,如图1所示为一种差分放大电路: 图1 ...
- 【渗透】node.js经典问题
1.循环问题 当循环调用 require() 时,一个模块可能在未完成执行时被返回.例如以下情况:a.js: exports.done = false; const b = require('./b. ...
- psql的时间类型,通过时间查询
psql的时间类型,通过时间查询 psql有date/timestamp类型,date只显示年月日1999-01-08,而timestamp显示年月日时分秒 1999-01-08 09:54:03.2 ...
- leetcode 219
固定长度的滑动窗口+set class Solution { public: bool containsNearbyDuplicate(vector<int>& nums, int ...
- docker 搭建本地私有仓库
1.使用registry镜像创建私有仓库 安装docker后,可以通过官方提供的 registry 镜像来简单搭建一套本地私有仓库环境: docker run -d -p : registry: 这将 ...