[YOLO]《YOLOv3: An Incremental Improvement》笔记
相比较于前两篇论文,个人感觉YOLO3作者有点来搞笑的!!!虽然加了一些新的点子进来,但是,论文的开头是这样的:

简单理解就是作者花了很多时间玩Twitter去了,所以没有做啥研究!!!!
然后:

你可以引用自己的论文吗?猜猜谁会这么做,就是这家伙,然后我发现链接竟然是他自己这篇论文:

还有调侃下谷歌、脸书等大公司和目标检测等技术:

很多从事这项研究的在谷歌和脸书,所以我们应该相信他们不会用技术来采集我们的信息然后拿来卖!!!等等,你是说这才是技术的真正用途????哈哈,投资计算机视觉研究的都是军方的人,他们从未将新技术用来杀人!!!
接着作者说:

希望搞计算视觉的人是出于兴趣做一件快乐的事情,比如数数公园里斑马的数量,跟踪下房子周围的猫!!!!
重要的是接下来的一句,他说:

不要艾特我,我终于退出推特了!!!
好咯,言归正传,那么其实这篇论文相比较前两篇,倒是没啥其他特别的点,总结起来主要也就是新的骨架和多尺度。
一、Bounding Box Prediction
目标边界框的预测实际上也还是沿用YOLO2的做法,网络会预测每个网格中目标边界框的四个坐标tx、ty、tw、th,如果每个网格相对于整体图像的左上角的偏移量为(Cx,Cy),而先验边界框的宽度和高度为pw、ph,那么由预测值到坐标的映射如下:

训练的时候则是取所有损失的平方和。
YOLO3采用逻辑回归来预测每个边界框的包含目标的分数objectness score,如果边界框与ground truth object的重叠大于其它边界框,那么其分数为1,如果边界框不是最好的,但是与ground truth object的重叠大于一定阈值,那么就忽略该预测。系统只为每个ground truth object分配一个边界框,没有分配的边界框就不会对坐标或者类别的预测造成损失?

二、Class Prediction
类别预测,YOLO3不适用softmax,因为发现没啥特别影响,所以用独立的逻辑分类器。训练的时候用了二元交叉熵损失函数。
三、Predictions Across Scales
多尺度预测,YOLO3使用了三个尺度,借鉴了FPN,使用多尺度。最后一个卷积提取了一个三维的编码了边界框、目标分数和类别预测等信息的张量,以COCO数据集为例子,每个尺度都会预测三个边界盒子,那么每个尺度的张量大小为:

其中4为4个边界框偏移量,1个目标检测分数,80个类别的概率。三个尺度之间的大小关系是彼此2倍的递进的关系。通过上采样将小尺度特征图与大尺度特征图拼接,然后又新加一些卷积层对融合后的特征做了处理。
YOLO3同样使用K均值聚类来计算先验框,对三个尺度计算了9个类,分别为:

四、Feature Extractor
特征提取部分,YOLO3设计了新的骨架,Darknet53,因为用了53个卷积层:

新骨架与Darknet19和其它网络的性能对比如下:

Darknet53的表现还是比较好的。
四、Training
跟YOLO2的做法基本上是类似的。
五、Things We Tried That Didn’t Work
作者做了一些新的尝试,但是没有作用:
1、Anchor box x, y offset predictions:尝试用常规的先验框机制,也就是用线性激活函数预测x、y为边界框宽度和高度的倍数,但是没用。
2、Linear x, y predictions instead of logistic:用线性激活函数直接预测x、y偏移量,而不是用逻辑回归,没用。
3、Focal loss:尝试用Focal loss,但是没用,可能YOLO3对于Focal loss要解决的问题来说已经很溜了,不需要Focal loss了吧,这点作者做了一些测试,但是也说不准。
4、Dual IOU thresholds and truth assignment:尝试采用Faster RCNN采用的双阈值策略,但是没用。
六、YOLO3 表现:
在COCO上与其它算法的对比,不如RetinaNet,但是基本上也还是比SSD好一些(相爱相杀?)



论文:https://arxiv.org/pdf/1804.02767.pdf
支离东北风尘际,漂泊西南天地间。
三峡楼台淹日月,五溪衣服共云山。
羯胡事主终无赖,词客哀时且未还。
庾信平生最萧瑟,暮年诗赋动江关。
-- 杜甫 《咏怀古迹 五首 其一》
[YOLO]《YOLOv3: An Incremental Improvement》笔记的更多相关文章
- 深度学习论文翻译解析(一):YOLOv3: An Incremental Improvement
论文标题: YOLOv3: An Incremental Improvement 论文作者: Joseph Redmon Ali Farhadi YOLO官网:YOLO: Real-Time Obje ...
- 论文阅读笔记三十二:YOLOv3: An Incremental Improvement
论文源址:https://pjreddie.com/media/files/papers/YOLOv3.pdf 代码:https://github.com/qqwweee/keras-yolo3 摘要 ...
- 目标检测(七)YOLOv3: An Incremental Improvement
项目地址 Abstract 该技术报告主要介绍了作者对 YOLOv1 的一系列改进措施(注意:不是对YOLOv2,但是借鉴了YOLOv2中的部分改进措施).虽然改进后的网络较YOLOv1大一些,但是检 ...
- 目标检测:YOLO(v1 to v3)——学习笔记
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...
- 从YOLOv1到YOLOv3,目标检测的进化之路
https://blog.csdn.net/guleileo/article/details/80581858 本文来自 CSDN 网站,作者 EasonApp. 作者专栏: http://dwz.c ...
- YOLO v1到YOLO v4(下)
YOLO v1到YOLO v4(下) Faster YOLO使用的是GoogleLeNet,比VGG-16快,YOLO完成一次前向过程只用8.52 billion 运算,而VGG-16要30.69bi ...
- 检测算法简介及其原理——fast R-CNN,faster R-CNN,YOLO,SSD,YOLOv2,YOLOv3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- 论文笔记:目标检测算法(R-CNN,Fast R-CNN,Faster R-CNN,FPN,YOLOv1-v3)
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的 ...
随机推荐
- Python 基础之递归 递归函数 尾递归 斐波那契
1.递归函数 定义:自己调用自己的函数递:去归:回有去有回是递归#(1)简单的递归函数def digui(n): print(n) if n > 0: digui(n- ...
- VNC怎么和宿主机共享粘贴板
VNC怎么和宿主机共享粘贴板 假设目标主机是linux,终端主机是windows(就是在windows上使用VNC登陆linux) 在linux中执行vncconfig -nowin& 在li ...
- redis之Hash类型常用方法总结
redis之Hash类型常用方法总结 格式: 存--HMGET key field [field ...] 取--HMGET key field [field ...] M:表示能取多个值,many ...
- [网络必学]TCP/IP四层模型讲解【笔记整理通俗易懂版】
OSI七层模型 表示层:用来解码不同的格式为机器语言,以及其他功能. 会话层:判断是否需要网络传输. 传输层:识别端口来指定服务器,如指定80端口的www服务. 网络层:提供逻辑地址选路,即发 ...
- 【剑指Offer面试编程题】题目1523:从上往下打印二叉树--九度OJ
题目描述: 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 输入: 输入可能包含多个测试样例,输入以EOF结束. 对于每个测试案例,输入的第一行一个整数n(1<=n<=1000, ...
- 回顾PHP:第一章:PHP基础语法
第一章:PHP基础语法 一.常量: 1.1.define()函数:define(‘R’,’5’,’true’); //R:常量名,5:常量值,true:常量名对大小写不敏感,为false时表示对常量名 ...
- map的查询和修改方法
1:map查询的方法 package com.cn.util; import java.util.ArrayList; import java.util.HashMap; import java.ut ...
- Day10 - 灾难 HYSBZ - 2815
Description 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从而引发一系列的生态灾难. 学过生 ...
- Pyspider的基本使用 -- 入门
简介 一个国人编写的强大的网络爬虫系统并带有强大的WebUI 采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器 官方文档: ...
- 079、Java数组之数组的静态初始化
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...