题目背景

题目描述

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

输入输出格式

输入格式:

输入文件名为 substring.in。

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问

题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

输出格式:

输出文件名为 substring.out。 输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求[b]输出答案对 1,000,000,007 取模的结果。[/b]

输入输出样例

输入样例#1: 复制

6 3 1
aabaab
aab
输出样例#1: 复制

2
输入样例#2: 复制

6 3 2
aabaab
aab
输出样例#2: 复制

7
输入样例#3: 复制

6 3 3
aabaab
aab
输出样例#3: 复制

7

说明

对于第 1 组数据:1≤n≤500,1≤m≤50,k=1;

对于第 2 组至第 3 组数据:1≤n≤500,1≤m≤50,k=2; 对于第 4 组至第 5 组数据:1≤n≤500,1≤m≤50,k=m; 对于第 1 组至第 7 组数据:1≤n≤500,1≤m≤50,1≤k≤m; 对于第 1 组至第 9 组数据:1≤n≤1000,1≤m≤100,1≤k≤m; 对于所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

设dp[ i ][ j ][ k ]为A用到了 i ,B用到了 j ,已经用了 k 个子串, 并且一定用了当前字符(A[i])时的方案数。

设f[ i ][ j ][ k ]为A用到了 i ,B用到了 j ,已经用了 k 个子串, 无论用不用当前字符(A[i])时的方案数总和。

接下来这个转移可就有蛮难想了。

一个一个来,

先分析一下 s 的转移。

能转移的前提自然是 A[ i ] == B [ j ]啦。

既然 A[i] 一定要用,那么依旧是两种情况:独自成一串 或 与前面的成一串。

独自成一串,方案数为:f[ i-1 ][ j-1 ][ k-1]

与前方共成一串,方案数为:dp[ i-1 ][ j-1 ][ k ],因为前一个字符串(A[i-1])也一定要用!

所以合并一下: dp[ i ][ j ][ k ] = f[ i-1 ][ j-1 ][ k-1 ] + dp[ i-1 ][ j-1 ][ k ];

接着分析 f 的转移。

f[ i ][ j ][ k ] 的来源也有两种: 使用当前字符 或 不使用当前字符

对于使用当前字符,方案数算法如上,答案即:dp[ i ][ j ][ k ];

对于不使用当前字符,则从f[ i-1 ]转来,即:f[ i -1 ][ j ][ k ];

合并一下: f[ i ][ j ][ k ] = f[ i-1 ][ j ][ k ] + dp[ i ][ j ][ k ];

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=;
const int INF=0x7fffff;
const int mod=1e9+;
inline int read()
{
char c=getchar();int flag=,x=;
while(c<''||c>'') {if(c=='-') flag=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-,c=getchar();return x*flag;
}
int dp[][MAXN][MAXN];//一定要用
int f[][MAXN][MAXN];//可以不用
char s1[MAXN],s2[MAXN];
int n,m,t;
int main()
{
n=read();m=read();t=read();
scanf("%s",s1+);scanf("%s",s2+);
int now=,past=;
f[][][]=;
for(int i=;i<=n;i++)
{
f[now][][]=;
for(int j=;j<=m;j++)
{
for(int k=;k<=t;k++)
{
if(s1[i]==s2[j]) dp[now][j][k]=(dp[past][j-][k]+f[past][j-][k-])%mod;
else dp[now][j][k]=;
f[now][j][k]=(f[past][j][k]+dp[now][j][k])%mod;
}
}
swap(now,past);
}
printf("%d",f[past][m][t]);
return ;
}

洛谷 P2679 子串的更多相关文章

  1. 洛谷 P2679 子串 解题报告

    P2679 子串 题目描述 有两个仅包含小写英文字母的字符串\(A\)和\(B\). 现在要从字符串\(A\)中取出\(k\)个互不重叠的非空子串,然后把这\(k\)个子串按照其在字符串\(A\)中出 ...

  2. [NOIP2015] 提高组 洛谷P2679 子串

    题目背景 无 题目描述 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新 ...

  3. 洛谷P2679 子串——DP

    题目:https://www.luogu.org/problemnew/show/P2679 DP水题: 然而被摆了一道,下面加 // 的地方都是一开始没写好的地方...还是不周密: 仔细审题啊... ...

  4. 2018.11.04 洛谷P2679 子串(线性dp)

    传送门 为什么前几年的noipnoipnoip总是出这种送分题啊? 这个直接线性dpdpdp不就完了吗? f[i][j][k][0/1]f[i][j][k][0/1]f[i][j][k][0/1]表示 ...

  5. 洛谷P2679 子串 [noip2015] dp

    正解:dp 解题报告: 感觉是道dp好题啊,所以就写了个题解 代码实现难度低,思维难度大,像我这种思维僵化傻逼选手只想到了爆搜+组合数学... 其实是道很妙的dp题!好趴也没有多妙主要大概是妙在想到了 ...

  6. 洛谷P2679 子串

    放题解 题目传送门 放代码

  7. 【题解】洛谷P2679 [NOIP2015TG] 子串(DP+滚动数组)

    次元传送门:洛谷P2679 思路 蒟蒻一开始并没有思路而去看了题解 我们发现对于两个字串的位置 我们只需要管他们匹配成功或者匹配失败即可 f[i][j][k] 记录当前 a[i]不论等不等于b[j] ...

  8. 题解【洛谷P2679】[NOIP2015]子串

    题面 看到求方案数,还要对 \(1000000007\ (1e9+7)\) 取模,一般这样的问题都要考虑 动态规划. 我们设 \(dp_{i,j,k,0/1}\) 表示 \(A_{1\dots i}\ ...

  9. 洛谷 P1032 子串变换

    题目链接 https://www.luogu.org/problemnew/show/P1032 本题是一道bfs问题,从a串开始,每一步完成替换一对字符串(但是一个一步替换可以将这对字符串替换好几次 ...

随机推荐

  1. Watcher详解 工作机制, Watcher客户端注册、Watcher 服务端注册

    Watcher详解.接口 在 ZooKeeper 中, 接口类 Watcher 用于表示一个标注你的事件处理器,其定义了事件通知相关的逻辑,包含 KeeperState 和 EventType 两个枚 ...

  2. Android 五大存储方式具体解释

    SharedPreferences与Editor SharedPreferences保存的数据仅仅要是类似于配置信息格式的数据.因此它保存的数据主要是简单的key-value对形式.以下关系图 上图全 ...

  3. Spark修炼之道(高级篇)——Spark源代码阅读:第十二节 Spark SQL 处理流程分析

    作者:周志湖 以下的代码演示了通过Case Class进行表Schema定义的样例: // sc is an existing SparkContext. val sqlContext = new o ...

  4. CentOS 中使用yum出现的“UnicodeDecodeError: &#39;ascii&#39; codec”问题解决方法

    问题 新装了CentOS 6.5系统,打算使用yum安装程序是出现了例如以下错误: Loading mirror speeds from cached hostfile Traceback (most ...

  5. 如何快速复制Windows警告提示消息对话框内容

    凡是使用过计算机的朋友,都遇到过系统发出的警告提示消息对话框,如图所示. 哇!好长的一串英文错误警告,这要手写到什么时候呢?不!现在不用这么麻烦了. 你只要鼠标选中这个提示框Ctrl+C,然后打开你的 ...

  6. 虚拟摄像头vivi的测试(二)

    (前一部分的基础操作来源于作者:LingXiaokai 的 Ubuntu 9.10 下如何使用笔记本摄像头以及虚拟摄像头vivi的测试) 自己仅对实际操作中需要注意的点进行阐述 一.先在Ubuntu ...

  7. 51nod 最大子矩阵和

    一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值. 我们可以降维,枚举矩形的长,然后算出一个一维数组,然后就转化成了最大字段和问题 #include< ...

  8. SpringBoot与SpringCloud的区别

    1.Spring boot 是 Spring 的一套快速配置脚手架,可以基于spring boot 快速开发单个微服务:Spring Cloud是一个基于Spring Boot实现的云应用开发工具: ...

  9. struts2的acton标签中的ignoreContextParams属性和param子元素的冲突

    <s:action ignoreContextParams="true" executeResult="true" name="login&qu ...

  10. Cocos2d-x--iOS平台lua加密成luac资源方法和Jsc文件&lt;MAC平台开发试用--windows平台暂未研究&gt;

        首先要说.近期真的是太忙了.好久没写博客了,今天正好有空,就写一下近期在写游戏中的一些发现:     话说,基于Cocos2dx 引擎 + 脚本写游戏,至今的感触就是能够进行增量更新和即时编译 ...