[Luogu1273] 有线电视网

题目描述

某收费有线电视网计划转播一场重要的足球比赛。他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点。

从转播站到转播站以及从转播站到所有用户终端的信号传输费用都是已知的,一场转播的总费用等于传输信号的费用总和。

现在每个用户都准备了一笔费用想观看这场精彩的足球比赛,有线电视网有权决定给哪些用户提供信号而不给哪些用户提供信号。

写一个程序找出一个方案使得有线电视网在不亏本的情况下使观看转播的用户尽可能多。

输入输出格式

输入格式:

输入文件的第一行包含两个用空格隔开的整数N和M,其中2≤N≤3000,1≤M≤N-1,N为整个有线电视网的结点总数,M为用户终端的数量。

第一个转播站即树的根结点编号为1,其他的转播站编号为2到N-M,用户终端编号为N-M+1到N。

接下来的N-M行每行表示—个转播站的数据,第i+1行表示第i个转播站的数据,其格式如下:

K A1 C1 A2 C2 … Ak Ck

K表示该转播站下接K个结点(转播站或用户),每个结点对应一对整数A与C,A表示结点编号,C表示从当前转播站传输信号到结点A的费用。最后一行依次表示所有用户为观看比赛而准备支付的钱数。

输出格式:

输出文件仅一行,包含一个整数,表示上述问题所要求的最大用户数。

输入输出样例

输入样例#1:

5 3
2 2 2 5 3
2 3 2 4 3
3 4 2
输出样例#1:

2

说明

样例解释

如图所示,共有五个结点。结点①为根结点,即现场直播站,②为一个中转站,③④⑤为用户端,共M个,编号从N-M+1到N,他们为观看比赛分别准备的钱数为3、4、2,从结点①可以传送信号到结点②,费用为2,也可以传送信号到结点⑤,费用为3(第二行数据所示),从结点②可以传输信号到结点③,费用为2。也可传输信号到结点④,费用为3(第三行数据所示),如果要让所有用户(③④⑤)都能看上比赛,则信号传输的总费用为:

2+3+2+3=10,大于用户愿意支付的总费用3+4+2=9,有线电视网就亏本了,而只让③④两个用户看比赛就不亏本了。

前两道都是什么乱七八糟的DP,来道树形DP,当然好像对我有点难

题解:

用f[i][j] 表示以i为根的子树选取j个用户的最小费用,

然后用树形DP常用的方法进行转移,最后从大到小找到第一个大于等于0的f[1][i],i就是答案了

注意:转移的时候在将根的子树数量统计,不要一开始输入的时候就统计(当然这是我的方法)

所以其实这道题也不是很难吧

 %:pragma GCC optimize()
#include<bits/stdc++.h>
using namespace std;
const int N=;
vector <int> e[N];
int f[N][N],s[N],c[N],fa[N],a[N],n,m;
void dfs(int x,int fa){
f[x][]=;
for (int i=;i<e[x].size();++i) if (e[x][i]!=fa){
int to=e[x][i]; dfs(to,x);
for (int j=s[x];j>=;--j)
for (int k=s[to];k>=;--k)
f[x][j+k]=max(f[x][j+k],f[x][j]+f[to][k]-c[to]);
s[x]+=s[to];
}
if (e[x].size()==) f[x][]=a[x],s[x]=;
return;
}
int main(){
scanf("%d%d",&n,&m);
memset(f,-0x3f3f,sizeof(f));
for (int i=;i<=n-m;++i){
int sum,x; scanf("%d",&sum);
for (int j=;j<=sum;++j)
scanf("%d",&x),scanf("%d",&c[x]),
fa[x]=i,e[i].push_back(x);
}
for (int i=n-m+;i<=n;++i) scanf("%d",&a[i]);
dfs(,);
for (int i=m;i>=;--i)
if (f[][i]>=){
printf("%d",i); return ;
}
}

[Luogu1273] 有线电视网的更多相关文章

  1. 【Luogu1273】有线电视网(动态规划)

    [Luogu1273]有线电视网(动态规划) 题面 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端, ...

  2. 洛谷 P1273 有线电视网

    2016-05-31 13:25:45 题目链接: 洛谷 P1273 有线电视网 题目大意: 在一棵给定的带权树上取尽量多的叶子节点,使得sigma(val[选择的叶子节点])-sigma(cost[ ...

  3. P1273 有线电视网

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

  4. 洛谷 P1273 【有线电视网】

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

  5. P1273 有线电视网(树形dp)

    P1273 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. ...

  6. 洛谷 P1273 有线电视网(树形背包)

    洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是 ...

  7. 洛谷P1273 有线电视网 【树上分组背包】

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

  8. 洛谷P1273 有线电视网 (树上分组背包)

    洛谷P1273 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节 ...

  9. 有线电视网(树形dp)

    有线电视网 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点.从转播站到转播站以及从 ...

随机推荐

  1. WinXP SSH连接不上虚拟机的解决方法

    问题现象描述: 在VMWare中安装好linux系统后,选择桥接,从宿主机Windows上使用Putty, SSH Secure Shell等客户端工具连接linux上的ssh服务,客户端一直没有反应 ...

  2. java多线线程停止正确方法

    //军队线程 //模拟作战双方的行为 public class ArmyRunnable implements Runnable { //volatile保证了线程可以正确的读取其他线程写入的值 // ...

  3. (转)PJAX的实现与应用

    一.前言 web发展经历了一个漫长的周期,最开始很多人认为Javascript这们语言是前端开发的累赘,是个鸡肋,那个时候人们还享受着从一个a链接蹦到另一个页面的web神奇魔术.后来随着JavaScr ...

  4. logger日志

    Level 描述 ALL 各级包括自定义级别 DEBUG 指定细粒度信息事件是最有用的应用程序调试 ERROR 错误事件可能仍然允许应用程序继续运行 FATAL 指定非常严重的错误事件,这可能导致应用 ...

  5. Python2X和Python3X 除法运算符的使用:

    首先注明:如果没有特别说明,以下内容都是基于python 3.4的. 1. /是精确除法,//是向下取整除法,%是求模 2. %求模是基于向下取整除法规则的 3. 四舍五入取整round, 向零取整i ...

  6. 团体程序设计天梯赛-练习集-L1-036. A乘以B

    L1-036. A乘以B 看我没骗你吧 —— 这是一道你可以在10秒内完成的题:给定两个绝对值不超过100的整数A和B,输出A乘以B的值. 输入格式: 输入在第一行给出两个整数A和B(-100 < ...

  7. spring学习地址

    http://developer.51cto.com/art/201006/205212_2.htm

  8. html表单练习

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. 进程(day09)

    进程的管理 一.进程的基础 进程和程序的区别 每个进程有自己的pid.PCB 操作系统上运行的所有进程构成一颗树. 如何查看这颗树? pstree() 树根进程是init pid是 进程间的亲缘关系两 ...

  10. 多态(day10)

    二十二 多态(Polymorphic) 函数重写(虚函数覆盖).多态概念 如果将基类中的某个成员函数声明为虚函数,那么子类与其具有相同原型的成员函数就也将是虚函数,并且对基类中的版本形成覆盖. 这时, ...