luogu1313 计算系数
题目大意:给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m 项的系数。
将原式化为(ax+by)*(ax+by)*...①,然后将其拆解,拆解时x乘了多少次,a就乘了多少次,y,b同理。故设所求为t*a^n*b^m。因为拆解时相当于在①括号各个括号内提取出n个x,在剩余的括号内提取出y,不同的组合方式对应一个展开后的项a^n*b^m*x^n*y^(k-M),所以t等于C(k, a)。
怎么求组合数呢?利用C(r, r)=1, C(n, 0)=1, C(n, r)=C(n-1,r-1)+C(n-1,r)(n>r)进行递推即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define ll long long
const ll P = 10007, MAX_K = 1010; ll Mult(ll a, ll b)
{
ll ans = 0;
while (b)
{
if (b & 1)
ans = (ans + a) % P;
a = (a + a) % P;
b >>= 1;
}
return ans;
} ll Power(ll a, ll n)
{
ll ans = 1;
while (n)
{
if (n & 1)
ans = Mult(ans, a);
a = Mult(a, a);
n >>= 1;
}
return ans;
} int Comb(int r, int n)
{
static ll C[MAX_K];
memset(C, 0, sizeof(C));
C[0] = 1;
for (int i = 1; i <= n; i++)
{
for (int j = min(r, i); j >= 0; j--)
{
if (i == j)
C[j] = 1;
else
C[j] = (C[j - 1] + C[j]) % P;
}
}
return C[r];
} int main()
{
ll a, b, k, n, m;
scanf("%lld%lld%lld%lld%lld", &a, &b, &k, &n, &m);
printf("%lld\n", Mult(Comb(n, k), Mult(Power(a, n), Power(b, m))));
return 0;
}
luogu1313 计算系数的更多相关文章
- luogu1313计算系数题解--二项式定理
题目链接 https://www.luogu.org/problemnew/show/P1313 分析 二项式定理 \((a+b)^n=\sum_{k=0}^{n}{C^k_n a^k b^{n-k} ...
- codevs1137 计算系数
1137 计算系数 2011年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 给定一 ...
- 【转】TYVJ 1695 计算系数(NOIP2011 TG DAY2 1)
计算系数 题目描述 给定一个多项式(ax + by)k,请求出多项式展开后xn ym项的系数. [数据范围] 对于 30%的数据,有0≤k≤10: 对于 50%的数据,有a = 1,b = 1: 对于 ...
- NOIP2011 计算系数
1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...
- COJ 0138 NOIP201108计算系数
NOIP201108计算系数 难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 给定一个多项式(ax + by)^k,请求出多项式 ...
- 【洛谷p1313】计算系数
(%%%hmr) 计算系数[传送门] 算法呀那个标签: (越来越懒得写辽)(所以今天打算好好写一写) 首先(ax+by)k的计算需要用到二项式定理: 对于(x+y)k,有第r+1项的系数为:Tr+1= ...
- 一本通1648【例 1】「NOIP2011」计算系数
1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...
- 洛谷P1313 计算系数【快速幂+dp】
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
- 洛谷 P1313 计算系数 解题报告
P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...
随机推荐
- A - Team
Problem description One day three best friends Petya, Vasya and Tonya decided to form a team and tak ...
- 5.13会话技术Cookie---Session
.会话技术: 1.会话:一次会话中包含多次请求和相应. 一次会话:浏览器第一次给服务器资源发送请求,会话建立,直到有一方断开为止 2.功能:在一次会话的范围内的多次请求间,共享数据 3.方式: 1.客 ...
- MySql-Connector for NET 连接驱动选择
尝试在Visual Studio2010, 2012环境下链接Mysql, 为啥不直接在App.config里面写字符串, 当然是可以,但是当你想用EF 的时候,必须要有个数据源, 首先在[服务资源管 ...
- 智能识别快递地址api接口实现(PHP示例)
电商.ERP等行业发货时,批量录入图片上的收件人地址是个难题:智能识别收件人API是近乎完美的解决方案,通过识别图片,解析出图片中收件人的姓名.电话.详细地址(省.市.区/县.详细地址).将此接口集成 ...
- Windows-Server-2008、IIS7.0环境下配置伪静态化
在Windows-Server-2008.IIS7.0环境下配置伪静态化 首先,是IIS7.0的配置,由于Windows Server 2008操作系统默认的IIS版本为 ...
- 关于python学习路线
*Python进阶(目录/书籍/学习路线) 忘了从哪里转的了,没办法标记哦,实在不好意思... 目录:) 1. 简介&helloworld&开发环境配置 2.基本语法:标识符& ...
- layer自定义弹窗样式
1.下载并引用js, 官网http://layer.layui.com/ 文档http://www.layui.com/doc/modules/layer.html <link href=&qu ...
- MySQL--增删改查分页存储过程以及事务
添加和修改写在一起了 可以用id判断添加和修改 和事务在一起编码 可以让代码更严谨 在这里简单的说一下事务的四大特性 事务四大特性之原子性:原子性是指事务是一个不可再分割的工作单位,事务中的操作要么都 ...
- React Native - 使用Vibration API实现设备振动
有时程序中需要实现这样的功能,当有重要的消息提醒时,我们会发出声音告知用户.而如果用户关闭了声音,那么就可以改用振动来提醒用户. 使用 React Native 提供的 Vibration API,我 ...
- 团体程序设计天梯赛-练习集-L1-033. 出生年
L1-033. 出生年 以上是新浪微博中一奇葩贴:“我出生于1988年,直到25岁才遇到4个数字都不相同的年份.”也就是说,直到2013年才达到“4个数字都不相同”的要求.本题请你根据要求,自动填充“ ...