E. Correct Bracket Sequence Editor
 

Recently Polycarp started to develop a text editor that works only with correct bracket sequences (abbreviated as CBS).

Note that a bracket sequence is correct if it is possible to get a correct mathematical expression by adding "+"-s and "1"-s to it. For example, sequences "(())()", "()" and "(()(()))" are correct, while ")(", "(()" and "(()))(" are not. Each bracket in CBS has a pair. For example, in "(()(()))":

  • 1st bracket is paired with 8th,
  • 2d bracket is paired with 3d,
  • 3d bracket is paired with 2d,
  • 4th bracket is paired with 7th,
  • 5th bracket is paired with 6th,
  • 6th bracket is paired with 5th,
  • 7th bracket is paired with 4th,
  • 8th bracket is paired with 1st.

Polycarp's editor currently supports only three operations during the use of CBS. The cursor in the editor takes the whole position of one of the brackets (not the position between the brackets!). There are three operations being supported:

  • «L» — move the cursor one position to the left,
  • «R» — move the cursor one position to the right,
  • «D» — delete the bracket in which the cursor is located, delete the bracket it's paired to and all brackets between them (that is, delete a substring between the bracket in which the cursor is located and the one it's paired to).

After the operation "D" the cursor moves to the nearest bracket to the right (of course, among the non-deleted). If there is no such bracket (that is, the suffix of the CBS was deleted), then the cursor moves to the nearest bracket to the left (of course, among the non-deleted).

There are pictures illustrated several usages of operation "D" below.

All incorrect operations (shift cursor over the end of CBS, delete the whole CBS, etc.) are not supported by Polycarp's editor.

Polycarp is very proud of his development, can you implement the functionality of his editor?

Input

The first line contains three positive integers nm and p (2 ≤ n ≤ 500 000, 1 ≤ m ≤ 500 000, 1 ≤ p ≤ n) — the number of brackets in the correct bracket sequence, the number of operations and the initial position of cursor. Positions in the sequence are numbered from left to right, starting from one. It is guaranteed that n is even.

It is followed by the string of n characters "(" and ")" forming the correct bracket sequence.

Then follow a string of m characters "L", "R" and "D" — a sequence of the operations. Operations are carried out one by one from the first to the last. It is guaranteed that the given operations never move the cursor outside the bracket sequence, as well as the fact that after all operations a bracket sequence will be non-empty.

Output

Print the correct bracket sequence, obtained as a result of applying all operations to the initial sequence.

Examples
input
8 4 5
(())()()
RDLD
output
()
 
Note

In the first sample the cursor is initially at position 5. Consider actions of the editor:

  1. command "R" — the cursor moves to the position 6 on the right;
  2. command "D" — the deletion of brackets from the position 5 to the position 6. After that CBS takes the form (())(), the cursor is at the position 5;
  3. command "L" — the cursor moves to the position 4 on the left;
  4. command "D" — the deletion of brackets from the position 1 to the position 4. After that CBS takes the form (), the cursor is at the position 1.

Thus, the answer is equal to ().

 题意:

  给你一个字符串只包含(),为合法匹配的括号串

  给你一系列的操作LRD

  问你最后这个串变成什么了

题解:

  每次操作我们用线段树第k大寻找相邻位置对应左右移动

  对于操作就是区间修改了

  可以先用栈预处理这个区间出来

  都能在线段树上操作

#include<bits/stdc++.h>
using namespace std;
const int N = 1e7+, M = 1e6+, mod = 1e9+; typedef long long ll; char s[N],op[N];
int n,m,p,f[N];
stack<int > q;
int l[N],r[N],sum[N],lazy[N];
void pushdown(int k) {
if(lazy[k]==-) return ;
sum[k<<] = ;
sum[k<<|] = ;
lazy[k<<] = ;
lazy[k<<|] = ;
lazy[k] = -;
sum[k] = sum[k<<]+sum[k<<|];
}
void build(int k,int s,int t) {
l[k] = s;r[k] = t;
sum[k] = ;
lazy[k] = -;
if(s==t) {
sum[k] = ;
return ;
}
int mid = (s+t)>>;
build(k<<,s,mid);
build(k<<|,mid+,t);
sum[k] = sum[k<<]+sum[k<<|];
}
void update(int k,int s,int t) {
if(lazy[k]!=-) {
pushdown(k);
}
if(l[k]==s&&r[k]==t) {
sum[k] = ;
lazy[k] = ;
return ;
}
int mid = (l[k]+r[k])>>;
if(t<=mid) {
update(k<<,s,t);
}
else if(s>mid) update(k<<|,s,t);
else {
update(k<<,s,mid);
update(k<<|,mid+,t);
}
sum[k] = sum[k<<]+sum[k<<|];
}
int ask(int k,int x) {
if(lazy[k]!=-) pushdown(k);
if(l[k]==x&&r[k]==x) {
return sum[k];
}
int mid = (l[k]+r[k])>>;
if(x<=mid) return ask(k<<,x);
else return ask(k<<|,x);
} int ask(int k,int x,int y) {
if(lazy[k]!=-) pushdown(k);
if(l[k]==x&&r[k]==y) {
return sum[k];
}
int mid = (l[k]+r[k])>>;
if(y<=mid) {
return ask(k<<,x,y);
}
else if(x>mid) return ask(k<<|,x,y);
else {
return ask(k<<,x,mid) + ask(k<<|,mid+,y);
}
sum[k] = sum[k<<]+sum[k<<|];
} int query2(int id, int s, int t, int k){
if(lazy[id]!=-) pushdown(id);
if(s == t){
return s;
}
int mid = (s+t)>>;
if(sum[id<<] >= k) {
return query2(id<<, s , mid, k);
}else {
return query2(id<<|, mid + , t, k - sum[id<<]);
}
} int main() {
scanf("%d%d%d",&n,&m,&p);
scanf("%s%s",s+,op+);
for(int i=;i<=n;i++) {
if(s[i]=='(') {
q.push(i);
}
else {
int k = q.top();
f[i] = k;
f[k] = i;
q.pop();
}
}
build(,,n);
for(int i=;i<=m;i++) {
if(op[i]=='R') {
int tmp = ask(,,p);
tmp+=;
p = query2(,,n,tmp);
}
else if(op[i]=='L') {
int tmp = ask(,,p-) ;
p = query2(,,n,tmp);
}
else {
update(,min(f[p],f[f[p]]),max(f[p],f[f[p]]));
p = max(f[p],f[f[p]]);
int tmp = ask(,,p) ;
if(ask(,p,n)) {
p = query2(,,n,tmp+);
}
else if(tmp) {
p = query2(,,n,tmp);
}
else break;
}
}
for(int i=;i<=n;i++) {
if(ask(,i)) {
printf("%c",s[i]);
}
}
cout<<endl;
return ;
}

Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 线段树模拟的更多相关文章

  1. Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 栈 链表

    E. Correct Bracket Sequence Editor 题目连接: http://www.codeforces.com/contest/670/problem/E Description ...

  2. Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 模拟

    题目链接: http://codeforces.com/contest/670/problem/E 题解: 用STL的list和stack模拟的,没想到跑的还挺快. 代码: #include<i ...

  3. Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor (链表)

    题目链接:http://codeforces.com/contest/670/problem/E 给你n长度的括号字符,m个操作,光标初始位置是p,'D'操作表示删除当前光标所在的字符对应的括号字符以 ...

  4. Codeforces 670E - Correct Bracket Sequence Editor - [线段树]

    题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...

  5. Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp

    D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...

  6. Codeforces Round #271 (Div. 2) F. Ant colony (RMQ or 线段树)

    题目链接:http://codeforces.com/contest/474/problem/F 题意简而言之就是问你区间l到r之间有多少个数能整除区间内除了这个数的其他的数,然后区间长度减去数的个数 ...

  7. Codeforces Round #332 (Div. 2) C. Day at the Beach 线段树

    C. Day at the Beach Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/599/p ...

  8. Codeforces Round #271 (Div. 2) F题 Ant colony(线段树)

    题目地址:http://codeforces.com/contest/474/problem/F 由题意可知,最后能够留下来的一定是区间最小gcd. 那就转化成了该区间内与区间最小gcd数相等的个数. ...

  9. Codeforces Round #320 (Div. 1) [Bayan Thanks-Round] B. "Or" Game 线段树贪心

    B. "Or" Game Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/578 ...

随机推荐

  1. JAVA 构建使用 Native 库

    Java 使用Native文件,一般分解为下面几个步骤: 在Java代码中使用native关键字声明一个本地方法 运行javah,获得包含该方法声明的C语言头文件(使用jni编程中的C函数名通常是相关 ...

  2. 微信jssdk图片上传

    一.html页面如下: <div class="weui-cell"> <div class="weui-cell__hd"></ ...

  3. C++调用Matlab函数求特征值

    最近需要用到C++和Matlab的混编,记录一下学习过程~ 要实现的是调用Matlab函数,求矩阵前k个最小的特征值及其特征向量. //C++ #include "engine.h" ...

  4. Spring Cloud Alibaba、Spring Boot、Spring Cloud对应版本关系

    Spring Boot Spring Cloud Spring Cloud Alibaba 2.1.x Greenwich 0.9.x 2.0.x Finchley 0.2.x 1.5.x Edgwa ...

  5. PAT_A1125#Chain the Ropes

    Source: PAT A1125 Chain the Ropes (25 分) Description: Given some segments of rope, you are supposed ...

  6. 【剑指Offer】21、栈的压入、弹出序列

      题目描述:   输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2 ...

  7. [置顶] 来自 Google 的高可用架构理念与实践

    转自:   https://mp.weixin.qq.com/s?__biz=MzAwMDU1MTE1OQ==&mid=402738153&idx=1&sn=af5e76aad ...

  8. php第四节课

    对象 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.o ...

  9. JS控制全屏,监听退出全屏事件

    实现方案 //进入全屏 function requestFullScreen(de) { if(de.requestFullscreen){ //W3C de.requestFullscreen(); ...

  10. mysql如何删除数据库指定ID段的数据库。比如删除id 1-500的数据。

    delete from tablename where id>=1 and id<=500或者DELETE FROM `数据库名称`.`数据表名称` WHERE `house_cs`.`i ...