Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 线段树模拟
Recently Polycarp started to develop a text editor that works only with correct bracket sequences (abbreviated as CBS).
Note that a bracket sequence is correct if it is possible to get a correct mathematical expression by adding "+"-s and "1"-s to it. For example, sequences "(())()", "()" and "(()(()))" are correct, while ")(", "(()" and "(()))(" are not. Each bracket in CBS has a pair. For example, in "(()(()))":
- 1st bracket is paired with 8th,
- 2d bracket is paired with 3d,
- 3d bracket is paired with 2d,
- 4th bracket is paired with 7th,
- 5th bracket is paired with 6th,
- 6th bracket is paired with 5th,
- 7th bracket is paired with 4th,
- 8th bracket is paired with 1st.
Polycarp's editor currently supports only three operations during the use of CBS. The cursor in the editor takes the whole position of one of the brackets (not the position between the brackets!). There are three operations being supported:
- «L» — move the cursor one position to the left,
- «R» — move the cursor one position to the right,
- «D» — delete the bracket in which the cursor is located, delete the bracket it's paired to and all brackets between them (that is, delete a substring between the bracket in which the cursor is located and the one it's paired to).
After the operation "D" the cursor moves to the nearest bracket to the right (of course, among the non-deleted). If there is no such bracket (that is, the suffix of the CBS was deleted), then the cursor moves to the nearest bracket to the left (of course, among the non-deleted).
There are pictures illustrated several usages of operation "D" below.
All incorrect operations (shift cursor over the end of CBS, delete the whole CBS, etc.) are not supported by Polycarp's editor.
Polycarp is very proud of his development, can you implement the functionality of his editor?
The first line contains three positive integers n, m and p (2 ≤ n ≤ 500 000, 1 ≤ m ≤ 500 000, 1 ≤ p ≤ n) — the number of brackets in the correct bracket sequence, the number of operations and the initial position of cursor. Positions in the sequence are numbered from left to right, starting from one. It is guaranteed that n is even.
It is followed by the string of n characters "(" and ")" forming the correct bracket sequence.
Then follow a string of m characters "L", "R" and "D" — a sequence of the operations. Operations are carried out one by one from the first to the last. It is guaranteed that the given operations never move the cursor outside the bracket sequence, as well as the fact that after all operations a bracket sequence will be non-empty.
Print the correct bracket sequence, obtained as a result of applying all operations to the initial sequence.
8 4 5
(())()()
RDLD
()
In the first sample the cursor is initially at position 5. Consider actions of the editor:
- command "R" — the cursor moves to the position 6 on the right;
- command "D" — the deletion of brackets from the position 5 to the position 6. After that CBS takes the form (())(), the cursor is at the position 5;
- command "L" — the cursor moves to the position 4 on the left;
- command "D" — the deletion of brackets from the position 1 to the position 4. After that CBS takes the form (), the cursor is at the position 1.
Thus, the answer is equal to ().
题意:
给你一个字符串只包含(),为合法匹配的括号串
给你一系列的操作LRD
问你最后这个串变成什么了
题解:
每次操作我们用线段树第k大寻找相邻位置对应左右移动
对于操作就是区间修改了
可以先用栈预处理这个区间出来
都能在线段树上操作
#include<bits/stdc++.h>
using namespace std;
const int N = 1e7+, M = 1e6+, mod = 1e9+; typedef long long ll; char s[N],op[N];
int n,m,p,f[N];
stack<int > q;
int l[N],r[N],sum[N],lazy[N];
void pushdown(int k) {
if(lazy[k]==-) return ;
sum[k<<] = ;
sum[k<<|] = ;
lazy[k<<] = ;
lazy[k<<|] = ;
lazy[k] = -;
sum[k] = sum[k<<]+sum[k<<|];
}
void build(int k,int s,int t) {
l[k] = s;r[k] = t;
sum[k] = ;
lazy[k] = -;
if(s==t) {
sum[k] = ;
return ;
}
int mid = (s+t)>>;
build(k<<,s,mid);
build(k<<|,mid+,t);
sum[k] = sum[k<<]+sum[k<<|];
}
void update(int k,int s,int t) {
if(lazy[k]!=-) {
pushdown(k);
}
if(l[k]==s&&r[k]==t) {
sum[k] = ;
lazy[k] = ;
return ;
}
int mid = (l[k]+r[k])>>;
if(t<=mid) {
update(k<<,s,t);
}
else if(s>mid) update(k<<|,s,t);
else {
update(k<<,s,mid);
update(k<<|,mid+,t);
}
sum[k] = sum[k<<]+sum[k<<|];
}
int ask(int k,int x) {
if(lazy[k]!=-) pushdown(k);
if(l[k]==x&&r[k]==x) {
return sum[k];
}
int mid = (l[k]+r[k])>>;
if(x<=mid) return ask(k<<,x);
else return ask(k<<|,x);
} int ask(int k,int x,int y) {
if(lazy[k]!=-) pushdown(k);
if(l[k]==x&&r[k]==y) {
return sum[k];
}
int mid = (l[k]+r[k])>>;
if(y<=mid) {
return ask(k<<,x,y);
}
else if(x>mid) return ask(k<<|,x,y);
else {
return ask(k<<,x,mid) + ask(k<<|,mid+,y);
}
sum[k] = sum[k<<]+sum[k<<|];
} int query2(int id, int s, int t, int k){
if(lazy[id]!=-) pushdown(id);
if(s == t){
return s;
}
int mid = (s+t)>>;
if(sum[id<<] >= k) {
return query2(id<<, s , mid, k);
}else {
return query2(id<<|, mid + , t, k - sum[id<<]);
}
} int main() {
scanf("%d%d%d",&n,&m,&p);
scanf("%s%s",s+,op+);
for(int i=;i<=n;i++) {
if(s[i]=='(') {
q.push(i);
}
else {
int k = q.top();
f[i] = k;
f[k] = i;
q.pop();
}
}
build(,,n);
for(int i=;i<=m;i++) {
if(op[i]=='R') {
int tmp = ask(,,p);
tmp+=;
p = query2(,,n,tmp);
}
else if(op[i]=='L') {
int tmp = ask(,,p-) ;
p = query2(,,n,tmp);
}
else {
update(,min(f[p],f[f[p]]),max(f[p],f[f[p]]));
p = max(f[p],f[f[p]]);
int tmp = ask(,,p) ;
if(ask(,p,n)) {
p = query2(,,n,tmp+);
}
else if(tmp) {
p = query2(,,n,tmp);
}
else break;
}
}
for(int i=;i<=n;i++) {
if(ask(,i)) {
printf("%c",s[i]);
}
}
cout<<endl;
return ;
}
Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 线段树模拟的更多相关文章
- Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 栈 链表
E. Correct Bracket Sequence Editor 题目连接: http://www.codeforces.com/contest/670/problem/E Description ...
- Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 模拟
题目链接: http://codeforces.com/contest/670/problem/E 题解: 用STL的list和stack模拟的,没想到跑的还挺快. 代码: #include<i ...
- Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor (链表)
题目链接:http://codeforces.com/contest/670/problem/E 给你n长度的括号字符,m个操作,光标初始位置是p,'D'操作表示删除当前光标所在的字符对应的括号字符以 ...
- Codeforces 670E - Correct Bracket Sequence Editor - [线段树]
题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...
- Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp
D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...
- Codeforces Round #271 (Div. 2) F. Ant colony (RMQ or 线段树)
题目链接:http://codeforces.com/contest/474/problem/F 题意简而言之就是问你区间l到r之间有多少个数能整除区间内除了这个数的其他的数,然后区间长度减去数的个数 ...
- Codeforces Round #332 (Div. 2) C. Day at the Beach 线段树
C. Day at the Beach Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/599/p ...
- Codeforces Round #271 (Div. 2) F题 Ant colony(线段树)
题目地址:http://codeforces.com/contest/474/problem/F 由题意可知,最后能够留下来的一定是区间最小gcd. 那就转化成了该区间内与区间最小gcd数相等的个数. ...
- Codeforces Round #320 (Div. 1) [Bayan Thanks-Round] B. "Or" Game 线段树贪心
B. "Or" Game Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/578 ...
随机推荐
- HDU 1054 Hungary
Strategic Game Problem Description Bob enjoys playing computer games, especially strategic games, bu ...
- android黑科技系列——防自动抢红包外挂原理解析
一.前言 春节过年发个红包本来就是为了讨个喜庆,朋友亲戚之间的关系交流,但是现在随着技术变革,抢红包插件越来越多,导致现在不太愿意发红包了,特别是在一个多人群里,潜水的非常多,但是丢个红包瞬间就没了, ...
- java编程题(一)
[程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? //这是一个菲波拉契数列问题 p ...
- MxNet : use the MxNet windows versioin
The MxNet needs the following thirdparties: 1. lapack complie lapack-3.6.1: download the lapack-3.6 ...
- 【sqli-labs】 less4 GET - Error based - Double Quotes - String (基于错误的GET双引号字符型注入)
提交id参数 加' http://localhost/sqli/Less-4/?id=1' 页面正常,添加" http://localhost/sqli/Less-4/?id=1" ...
- (转)基于Metronic的Bootstrap开发框架经验总结(5)--Bootstrap文件上传插件File Input的使用
http://www.cnblogs.com/wuhuacong/p/4774396.html Bootstrap文件上传插件File Input是一个不错的文件上传控件,但是搜索使用到的案例不多,使 ...
- (转)OpenLayers3基础教程——OL3之Popup
http://blog.csdn.net/gisshixisheng/article/details/46794813 概述: 本节重点讲述OpenLayers3中Popup的调用时实现,OL3改用O ...
- JDBC Druid式link
准备工作:导入包------druid-1.0.9.jar src文件夹下放下druid.properties文件 且其中的url和数据库名要配置完备 import JdbcUtils.JDBC ...
- webstorm中vue项目--运行配制
## npm搭建的项目,需要运行npm run dev来启动 webstorm作为一款优秀的编辑器,通过配置运行设置,达到一键运行 1.添加node.js配置 2.configuration-> ...
- UDP、线程、mutex锁(day15)
一.基于UDP的网络编程模型 服务器端 .创建socket. .将fd和服务器的ip地址和端口号绑定 .recvfrom阻塞等待接收客户端数据 .业务处理 .响应客户端 客户端: .创建socket ...