【Uva 1633】Dyslexic Gollum
【Link】:
【Description】
输入正整数n和k(1≤n≤400,1≤k≤10),求长度为n的01串中有多少个不含长度至少 为k的回文连续子串。例如,n=k=3时只有4个串满足条件:001, 011, 100, 110。
【Solution】
状态压缩DP;
我们在做DP的时候要保证;
新添加的数,不会产生一个长度为k的回文子串;
但这还不够;
比如说
k=4
我们只保证不出现长度=4的回文子串是不是就能保证不会出现长度大于4的回文子串呢;
其实不然;
比如
10001
这是一个长度为5的回文子串;
但是它无法在去除长度为4的回文子串的情况下剔除掉;
因为
1000被认为是合法的;
下一次更新
去除首1;
只剩下000
然后再加上一个1
变成了0001
也会认为是合法的;
为什么呢?
因为我们没有剔除掉长度为3的回文子串
也即10001中间的3个0
因为长度为k的回文子串是由最左和最右两边的两个字符,加上中间一个回文子串组成的;
则只要我们能保证长度为k-2的回文子串没有出现;
就能保证新加的字符,不会组成长度为k的回文子串;
因此正确的做法应该是把长度为k和长度为k+1的回文子串都剔除掉;
这样;
长度为k+2,长度为k+3的回文子串也能剔除掉了;
从而所有长度大于等于k的回文子串也都能剔除掉了;
则设f[i][j]表示前i个数字,i-k..i这一段数字状态为j组成的符合要求的字符串的个数;
第i个数字有0和1两种情况;
分别枚举前一个状态是什么;
加上这个数字之后;
保证i-k+1..i不是回文子串且i-k..i也不是回文子串;
满足要求则这个状态就是可推的;
最后把f[n][0..2(k+1)−1]求和一下;
【NumberOf WA】
1
【Reviw】
在做DP的时候;
加上了一个字符;
要确定,它是不是一定能符合题意;
正确性要保证;
不要推到了错误的状态;
【Code】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x+1)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int K = 11;
const int M = 2048;
const int N = 400;
const int MOD = 1e9+7;
bool ban[K+5][M+10];
int two[K+10],dp[N+10][M+10];
bool bo[N+10][M+10];
bool ok(int k,int j){
vector <int> v,v1;
v.clear();
rep1(i,1,k){
v.pb(j%2);
j>>=1;
}
v1 = v;
reverse(all(v1));
if (v1!=v)
return false;
else
return true;
}
int main(){
//Open();
//Close();
two[0] = 1;
rep1(i,1,11) two[i] = two[i-1]*2;
rep1(k,1,11){
rep1(j,0,two[k]-1)
if (ok(k,j))
ban[k][j] = true;
}
int T;
ri(T);
while (T--){
int n,k;
ri(n),ri(k);
ms(dp,0),ms(bo,0);
dp[0][0] = 1,bo[0][0] = true;
rep1(i,0,k-2)
rep1(j,0,two[k]-1)
if (bo[i][j]){
int x = (j<<1)&(two[k]-1);
//+0
bo[i+1][x] = 1;
dp[i+1][x] = (dp[i+1][x] + dp[i][j])%MOD;
//+1
x+=1;
bo[i+1][x] = 1;
dp[i+1][x] = (dp[i+1][x] + dp[i][j])%MOD;
}
// i == k-1
rep1(j,0,two[k]-1)
if (bo[k-1][j]){
int x = (j<<1)&(two[k]-1);
//+0
if (!ban[k][x]){
bo[k][x] = 1;
dp[k][x] = (dp[k][x] + dp[k-1][j])%MOD;
}
//+1
x+=1;
if (!ban[k][x]){
bo[k][x] = 1;
dp[k][x] = (dp[k][x] + dp[k-1][j])%MOD;
}
}
rep1(i,k,n-1)
rep1(j,0,two[k+1]-1)
if (bo[i][j]){
int x = (j<<1)&(two[k+1]-1);
int tx = x&(two[k]-1);
//+0
if (!ban[k][tx] && !ban[k+1][x]){
bo[i+1][x] = 1;
dp[i+1][x] = (dp[i+1][x] + dp[i][j])%MOD;
}
//+1
x+=1;
tx+=1;
if (!ban[k][tx] && !ban[k+1][x]){
bo[i+1][x] = 1;
dp[i+1][x] = (dp[i+1][x] + dp[i][j])%MOD;
}
}
int ans = 0;
rep1(i,0,two[k+1]-1)
ans = (ans + dp[n][i])%MOD;
oi(ans);puts("");
}
return 0;
}
【Uva 1633】Dyslexic Gollum的更多相关文章
- 【巧妙算法系列】【Uva 11464】 - Even Parity 偶数矩阵
偶数矩阵(Even Parity, UVa 11464) 给你一个n×n的01矩阵(每个元素非0即1),你的任务是把尽量少的0变成1,使得每个元素的上.下.左.右的元素(如果存在的话)之和均为偶数.比 ...
- 【贪心+中位数】【UVa 11300】 分金币
(解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...
- 【UVa 10881】Piotr's Ants
Piotr's Ants Porsition:Uva 10881 白书P9 中文改编题:[T^T][FJUT]第二届新生赛真S题地震了 "One thing is for certain: ...
- 【UVa 116】Unidirectional TSP
[Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【UVa 1347】Tour
[Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【UVA 437】The Tower of Babylon(记忆化搜索写法)
[题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【uva 1025】A Spy in the Metro
[题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【Uva 11584】Partitioning by Palindromes
[Link]:https://cn.vjudge.net/contest/170078#problem/G [Description] 给你若干个只由小写字母组成的字符串; 问你,这个字符串,最少能由 ...
- 【Uva 11400】Lighting System Design
[Link]: [Description] 你要构建一个供电系统; 给你n种灯泡来构建这么一个系统; 每种灯泡有4个参数 1.灯泡的工作电压 2.灯泡的所需的电源的花费(只要买一个电源就能供这种灯泡的 ...
随机推荐
- 免费录屏软件之OBS Studio
好久没有再博客活动啦,今天给大家推荐一下录屏软件吧!首先我个人最喜欢的OBS Studio就说说它吧 1.免费.开源.功能强大.易上手 下面是下载地址: 官网下载 : https://ob ...
- PKU 2411 Mondriaan's Dream 状态DP
以前做过这题,今天又写了一次,突然发现写了一个好漂亮的DFS……(是不是太自恋了 - -#) 代码: #include <cstdio> #include <cstring> ...
- [React] Implement a Higher Order Component with Render Props
When making a reusable component, you'll find that people often like to have the API they're most fa ...
- [Python] Plotting multiple stocks
import os import pandas as pd import matplotlib.pyplot as plt def test_run(): start_date='2017-01-01 ...
- 16. IntellIJ IDEA 配置 Maven 以及 修改 默认 Repository
转自:https://www.cnblogs.com/phpdragon/p/7216626.html 今天将IntellIJ IDEA 关于Maven的配置总结一下,方便以后可参考. IDEA版本: ...
- Chromium Graphics : GPU Accelerated Compositing in Chrome
GPU Accelerated Compositing in Chrome Tom Wiltzius, Vangelis Kokkevis & the Chrome Graphics team ...
- 如何建立远程桌面连接(XP、Vista、Win7)
如何建立远程桌面连接(XP.Vista.Win7) 要求: 1:对方即你要连的机器必须要允许远程桌面连接,操作系统一般是winXP(单用户)和win2003server(多用户),具体设置:右击我的电 ...
- DotNetCore2.1 下Docker使用的学习
[环节1:CentOS 安装Docker] Step1:通过 uname -r 命令查看你当前的内核版本 uname -r Step2:使用 root 权限登录 Centos.确保 yum 包更新到最 ...
- spring的事务如何配置
spring的声明式事务配置: 1. <!-- 配置sessionFactory --> <bean id="sessionFactory" class=&quo ...
- cd---切换工作目录
cd命令用来切换工作目录至dirname. 其中dirName表示法可为绝对路径或相对路径.若目录名称省略,则变换至使用者的home directory(也就是刚login时所在的目录).另外,~也表 ...