Problem Description
There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him? 
The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.

There are no more than 100 trees.

 
Input
The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.

Zero at line for number of trees terminates the input for your program.

 
Output
The minimal length of the rope. The precision should be 10^-2.
 
Sample Input
9
12 7
24 9
30 5
41 9
80 7
50 87
22 9
45 1
50 7
0
 
Sample Output
243.06
 
Source
 
Recommend
Ignatius.L   |   We have carefully selected several similar problems for you:  2150 1348 1147 1558 1374 
 
计算几何比较大小 判断正负 千万要用 sgn函数! 精度!精度!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 109
#define N 21
#define MOD 1000000
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
所有线段投射到给定线段上取交集,如果交集距离大于eps 存在!s
*/
int sgn(double x)
{
if (fabs(x) < eps) return ;
if (x < ) return -;
else return ;
}
struct Point
{
double x, y;
Point() {}
Point(double _x, double _y) :x(_x), y(_y) {}
Point operator - (const Point& r)const
{
return Point(x - r.x, y - r.y);
}
double operator ^(const Point& r)const
{
return x*r.y - y*r.x;
}
double operator * (const Point& r)const
{
return x*r.x + y*r.y;
}
};
double dist(Point a, Point b)
{
return sqrt((a - b)*(a - b));
}
struct Line
{
Point s, e;
Line() {}
Line(Point _a, Point _B) :s(_a), e(_B) {}
};
bool Seg_inter_line(Line l1, Line l2)
{
return sgn((l2.s - l1.e) ^ (l1.s - l1.e))*sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= ;
}
bool cross(Line l1, Line l2)
{
return
max(l1.s.x, l1.e.x) >= min(l2.s.x, l2.e.x) &&
max(l2.s.x, l2.e.x) >= min(l1.s.x, l1.e.x) &&
max(l1.s.y, l1.e.y) >= min(l2.s.y, l2.e.y) &&
max(l2.s.y, l2.e.y) >= min(l1.s.y, l1.e.y) &&
sgn((l2.s - l1.e) ^ (l1.s - l1.e))*sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= &&
sgn((l1.s - l2.e) ^ (l2.s - l2.e))*sgn((l1.e - l2.e) ^ (l2.s - l2.e)) <= ;
}
double CalcArea(Point p[], int n)
{
double res = ;
for (int i = ; i < n; i++)
res += (p[i] ^ p[(i + ) % n]) / ;
return fabs(res);
}
double CalcLen(Point p[],int n)
{
double res = ;
for (int i = ; i < n; i++)
res += dist(p[i], p[(i + ) % n]);
return (res);
}
bool isconvex(Point p[], int n)
{
bool s[];
memset(s, false, sizeof(s));
for (int i = ; i < n; i++)
{
s[sgn((p[(i + ) % n] - p[i]) ^ (p[(i + ) % n] - p[i])) + ] = true;
if (s[] && s[])
return false;
}
return true;
}
//Point Calgravitycenter(Point p[], int n)
//{
// Point res(0, 0);
// double area = 0;
// for (int i = 0; i < n; i++)
// {
// ci[i] = (p[i] ^ p[(i + 1) % n]);
// ti[i].x = (p[i].x + p[(i + 1) % n].x);
// ti[i].y = (p[i].y + p[(i + 1) % n].y);
// res.x += ti[i].x * ci[i];
// res.y += ti[i].y * ci[i];
// area += ci[i] / 2;
// }
// res.x /= (6 * area);
// res.y /= (6 * area);
// return res;
//}
Point L[MAXN],tmp[MAXN];
int Stack[MAXN], top;
bool cmp(Point p1, Point p2)
{
double tmp = (p1 - L[]) ^ (p2 - L[]);
if (sgn(tmp) > )
return true;
else if (sgn(tmp) == && sgn(dist(p1, L[]) - dist(p2, L[]) <= ))
return true;
else
return false;
}
double Graham(int n)
{
Point p0;
int k = ;
p0 = L[];
for (int i = ; i < n; i++)
{
if ((p0.y > L[i].y) || (p0.x == L[i].x&&p0.x > L[i].x) )
{
k = i, p0 = L[i];
}
}
swap(L[k], L[]);
sort(L + , L + n, cmp);
if (n == )
{
top = , Stack[] = ;
return 0.0;
}
else if (n == )
{
top = , Stack[] = , Stack[] = ;
return dist(L[],L[]);
}
Stack[] = , Stack[] = , top = ;
for (int i = ; i < n; i++)
{
while (top > && sgn((L[Stack[top - ]] - L[Stack[top - ]]) ^ (L[i] - L[Stack[top - ]])) <= )
{
top--;
}
Stack[top++] = i;
}
double res = ;
for (int i = ; i < top; i++)
res += dist(L[Stack[i]], L[Stack[(i + ) % top]]);
return res;
}
int main()
{
int n;
while (scanf("%d", &n), n)
{
for (int i = ; i < n; i++)
scanf("%lf%lf", &L[i].x, &L[i].y);
printf("%.2lf\n", Graham(n));
}
}

Surround the Trees HDU 1392 凸包的更多相关文章

  1. HDU 1392 凸包模板题,求凸包周长

    1.HDU 1392 Surround the Trees 2.题意:就是求凸包周长 3.总结:第一次做计算几何,没办法,还是看了大牛的博客 #include<iostream> #inc ...

  2. HDU 1392 凸包

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  3. HDU 1392 Surround the Trees(几何 凸包模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1392 题目大意: 二维平面给定n个点,用一条最短的绳子将所有的点都围在里面,求绳子的长度. 解题思路: 凸包的模 ...

  4. hdu 1392凸包周长

    //用的自己的计算几何模板,不过比较慢嘿嘿 //要注意只有一个点和两个点 //Computational Geometry //by kevin_samuel(fenice) Soochow Univ ...

  5. HDU - 1392 凸包求周长(模板题)【Andrew】

    <题目链接> 题目大意: 给出一些点,让你求出将这些点全部围住需要的多长的绳子. Andrew算法 #include<iostream> #include<cstdio& ...

  6. HDU 1392 Surround the Trees(凸包入门)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. HDU - 1392 Surround the Trees (凸包)

    Surround the Trees:http://acm.hdu.edu.cn/showproblem.php?pid=1392 题意: 在给定点中找到凸包,计算这个凸包的周长. 思路: 这道题找出 ...

  8. HDU 1392 Surround the Trees (凸包周长)

    题目链接:HDU 1392 Problem Description There are a lot of trees in an area. A peasant wants to buy a rope ...

  9. hdu 1392 Surround the Trees 凸包模板

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. PCB MS SQL 标量函数与表值函数(CLR) 实现文件与目录操作

    一.C#写SQL SERVER(CLR)实现文件操作 标量函数: 文件移动 ,复制,检测文件存在,写入新文件文本,读取文本,创建目录,删除目录,检测目录是否存在 /// <summary> ...

  2. Java的Thread.currentThread().getName() 和 this.getName() 以及 对象.getName()区别???

    最近在看Java多线程这本书,但是发现里面有个概念自己搞不清楚.就是Thread.currentThread().getName() 和 this.getName() 以及 对象.getName()区 ...

  3. weak看iOS面试

    2013年 面试官:代理用weak还是strong? 我 :weak . 面试官:明天来上班吧 2014年 面试官:代理为什么用weak不用strong? 我 : 用strong会造成循环引用. 面试 ...

  4. MyEclipse找不到install new software

    Window->Preferences->Capabilities-> classic update(勾选即可) 勾选后会出现software updates,下面按照help-&g ...

  5. 去掉myeclipse的预览窗口

    1,选择菜单: windows -> preferences2,在弹出窗口中选择General-> Editors -> FileAssociations3,在上方框内选择*.jsp ...

  6. Criteria 查询

    Criteria.Criterion接口和Expression类组成,他支持在运行时动态生成查询语句. Criteria查询是Hibernate提供的一种查询方式 Hibernate检索方式:  PO ...

  7. Scala-基础-变量与常量

    import junit.framework.TestCase import org.junit.Test //变量 //var 代表变量 //val 代表常量 //关键字 class,extends ...

  8. 研磨JavaScript系列(一):回归简单

    想要理解JavaScript,你得首先放下对象和类的概念,回到数据和代码的本原.编程世界只有数据和代码两种基本元素,而这两种元素又有着纠缠不清的关系.JavaScript就是把数据和代码都简化到最原始 ...

  9. WEB开发模式浅析

    WEB技术随着互联网的崛起而崛起,又随着移动互联网的发展而呈现更加多样化的趋势. 黑暗时代:大约在2005年以前,所谓的WEB开发主要还是美工的活,HTML/CSS占主导,Dreamwaver做为页面 ...

  10. 【译】x86程序员手册13-第5章 内存管理

    Chapter 5 Memory Management 内存管理 The 80386 transforms logical addresses (i.e., addresses as viewed b ...