Problem Description
There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him? 
The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.

There are no more than 100 trees.

 
Input
The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.

Zero at line for number of trees terminates the input for your program.

 
Output
The minimal length of the rope. The precision should be 10^-2.
 
Sample Input
9
12 7
24 9
30 5
41 9
80 7
50 87
22 9
45 1
50 7
0
 
Sample Output
243.06
 
Source
 
Recommend
Ignatius.L   |   We have carefully selected several similar problems for you:  2150 1348 1147 1558 1374 
 
计算几何比较大小 判断正负 千万要用 sgn函数! 精度!精度!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 109
#define N 21
#define MOD 1000000
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
所有线段投射到给定线段上取交集,如果交集距离大于eps 存在!s
*/
int sgn(double x)
{
if (fabs(x) < eps) return ;
if (x < ) return -;
else return ;
}
struct Point
{
double x, y;
Point() {}
Point(double _x, double _y) :x(_x), y(_y) {}
Point operator - (const Point& r)const
{
return Point(x - r.x, y - r.y);
}
double operator ^(const Point& r)const
{
return x*r.y - y*r.x;
}
double operator * (const Point& r)const
{
return x*r.x + y*r.y;
}
};
double dist(Point a, Point b)
{
return sqrt((a - b)*(a - b));
}
struct Line
{
Point s, e;
Line() {}
Line(Point _a, Point _B) :s(_a), e(_B) {}
};
bool Seg_inter_line(Line l1, Line l2)
{
return sgn((l2.s - l1.e) ^ (l1.s - l1.e))*sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= ;
}
bool cross(Line l1, Line l2)
{
return
max(l1.s.x, l1.e.x) >= min(l2.s.x, l2.e.x) &&
max(l2.s.x, l2.e.x) >= min(l1.s.x, l1.e.x) &&
max(l1.s.y, l1.e.y) >= min(l2.s.y, l2.e.y) &&
max(l2.s.y, l2.e.y) >= min(l1.s.y, l1.e.y) &&
sgn((l2.s - l1.e) ^ (l1.s - l1.e))*sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= &&
sgn((l1.s - l2.e) ^ (l2.s - l2.e))*sgn((l1.e - l2.e) ^ (l2.s - l2.e)) <= ;
}
double CalcArea(Point p[], int n)
{
double res = ;
for (int i = ; i < n; i++)
res += (p[i] ^ p[(i + ) % n]) / ;
return fabs(res);
}
double CalcLen(Point p[],int n)
{
double res = ;
for (int i = ; i < n; i++)
res += dist(p[i], p[(i + ) % n]);
return (res);
}
bool isconvex(Point p[], int n)
{
bool s[];
memset(s, false, sizeof(s));
for (int i = ; i < n; i++)
{
s[sgn((p[(i + ) % n] - p[i]) ^ (p[(i + ) % n] - p[i])) + ] = true;
if (s[] && s[])
return false;
}
return true;
}
//Point Calgravitycenter(Point p[], int n)
//{
// Point res(0, 0);
// double area = 0;
// for (int i = 0; i < n; i++)
// {
// ci[i] = (p[i] ^ p[(i + 1) % n]);
// ti[i].x = (p[i].x + p[(i + 1) % n].x);
// ti[i].y = (p[i].y + p[(i + 1) % n].y);
// res.x += ti[i].x * ci[i];
// res.y += ti[i].y * ci[i];
// area += ci[i] / 2;
// }
// res.x /= (6 * area);
// res.y /= (6 * area);
// return res;
//}
Point L[MAXN],tmp[MAXN];
int Stack[MAXN], top;
bool cmp(Point p1, Point p2)
{
double tmp = (p1 - L[]) ^ (p2 - L[]);
if (sgn(tmp) > )
return true;
else if (sgn(tmp) == && sgn(dist(p1, L[]) - dist(p2, L[]) <= ))
return true;
else
return false;
}
double Graham(int n)
{
Point p0;
int k = ;
p0 = L[];
for (int i = ; i < n; i++)
{
if ((p0.y > L[i].y) || (p0.x == L[i].x&&p0.x > L[i].x) )
{
k = i, p0 = L[i];
}
}
swap(L[k], L[]);
sort(L + , L + n, cmp);
if (n == )
{
top = , Stack[] = ;
return 0.0;
}
else if (n == )
{
top = , Stack[] = , Stack[] = ;
return dist(L[],L[]);
}
Stack[] = , Stack[] = , top = ;
for (int i = ; i < n; i++)
{
while (top > && sgn((L[Stack[top - ]] - L[Stack[top - ]]) ^ (L[i] - L[Stack[top - ]])) <= )
{
top--;
}
Stack[top++] = i;
}
double res = ;
for (int i = ; i < top; i++)
res += dist(L[Stack[i]], L[Stack[(i + ) % top]]);
return res;
}
int main()
{
int n;
while (scanf("%d", &n), n)
{
for (int i = ; i < n; i++)
scanf("%lf%lf", &L[i].x, &L[i].y);
printf("%.2lf\n", Graham(n));
}
}

Surround the Trees HDU 1392 凸包的更多相关文章

  1. HDU 1392 凸包模板题,求凸包周长

    1.HDU 1392 Surround the Trees 2.题意:就是求凸包周长 3.总结:第一次做计算几何,没办法,还是看了大牛的博客 #include<iostream> #inc ...

  2. HDU 1392 凸包

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  3. HDU 1392 Surround the Trees(几何 凸包模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1392 题目大意: 二维平面给定n个点,用一条最短的绳子将所有的点都围在里面,求绳子的长度. 解题思路: 凸包的模 ...

  4. hdu 1392凸包周长

    //用的自己的计算几何模板,不过比较慢嘿嘿 //要注意只有一个点和两个点 //Computational Geometry //by kevin_samuel(fenice) Soochow Univ ...

  5. HDU - 1392 凸包求周长(模板题)【Andrew】

    <题目链接> 题目大意: 给出一些点,让你求出将这些点全部围住需要的多长的绳子. Andrew算法 #include<iostream> #include<cstdio& ...

  6. HDU 1392 Surround the Trees(凸包入门)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. HDU - 1392 Surround the Trees (凸包)

    Surround the Trees:http://acm.hdu.edu.cn/showproblem.php?pid=1392 题意: 在给定点中找到凸包,计算这个凸包的周长. 思路: 这道题找出 ...

  8. HDU 1392 Surround the Trees (凸包周长)

    题目链接:HDU 1392 Problem Description There are a lot of trees in an area. A peasant wants to buy a rope ...

  9. hdu 1392 Surround the Trees 凸包模板

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. Rails 服务器架设失败问题

    更新: 2017/09/14 补充了简单的确认号码的方法 A server is already running. Check /Users/...../pids/server.pid. Exitin ...

  2. P4166 [SCOI2007]最大土地面积

    传送门 首先,四边形的四个点肯定都在凸包上(别问我为什么我也不知道,感性理解一下好了) 那么我们可以求出凸包之后\(O(n^4)\)暴力枚举,据说在随机数据下凸包上的点只有\(O(logn)\)个可过 ...

  3. Akka源码分析-故障恢复

    Actor故障恢复是akka中非常重要的内容,在之前的博客中虽然有介绍,但都是杂糅在其他知识点的细节中,本博客将单独介绍这一部分的故障恢复.为了简化分析的单独,本文只研究用户的actor故障恢复的步骤 ...

  4. 一种高兼容性的JavaBean序列化方案

    在对JavaBean做序列化时,我们可能在某些场景希望前后兼容性好一些.比如所有的javaBean都序列化后保存在数据库,用的时候需要反序列化创建.随着业务的发展,数据模型可能会进行变更,那么原来的数 ...

  5. Hadoop Hive概念学习系列之hive里的扩展接口(CLI、Beeline、JDBC)(十六)

    <Spark最佳实战  陈欢>写的这本书,关于此知识点,非常好,在94页. hive里的扩展接口,主要包括CLI(控制命令行接口).Beeline和JDBC等方式访问Hive. CLI和B ...

  6. IIS 503 错误

    今天早上乘公交的时候,网站运维群里直接炸了,网站打不开,503错误.然后就各种@我,吓得我手机都要扔了,然后马不停蹄的赶往公司去查看错误. 我首先在IIS上浏览网页,想试图在服务器上显现出详细错误,这 ...

  7. 【反射】Java反射机制

    Class 1.Class是一个类,一个描述类的类(也就是描述类本身),封装了描述方法的Method,描述字段的Filed,描述构造器的Constructor等属性    2.对象照镜子后(反射)可以 ...

  8. Hive扩展功能(七)--Hive On Spark

    软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos ...

  9. java web项目和java项目的区别(看清IDE本质)

    想必大家在使用MyEclipse时对这两个概念不去深究.只知道是Java EE类的基本都是Web项目,而Java应用程序就是Java项目.而且很多人都愿意使用MyEclipse作为开发工具,且不说大家 ...

  10. Caffe:导入caffePython-PyQt failed

    在另一台电脑上使用caffe python版本,显示 Backend Qt5Agg is interactive backend. Turning interactive mode on.       ...