先上题目:

Sum

Time Limit: 6000/3000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)
SubmitStatus

Problem Description

给出N,a[1]... a[N],还有M,b[1]... b[M]
long long ans = 0;
for(int i = 1; i <= N; i ++)
    for(int j = 1; j <= M; j ++)
        ans += abs(a[i] - b[j]) * (i - j);

Input

多组数据,每组数据

第一行N,M(1 <= N,M <= 50000)

第二行N个数字,a[1].. a[N]

第三行M个数字,b[1]..b[M]

(1 <= a[i],b[i] <= 10000)

Output

每组数据一行,ans

Sample Input

4 4
1 2 3 4
5 6 7 8

Sample Output

-40

Hint

you may be TLE if 10000 * 10000 per case
SubmitStatus
  
  这一题最简单的思路就是直接枚举,但是这样绝对会TLE,然后稍微优化一下将运算的公式分成两种情况(a[i]>=b[j] || a[i]<b[j]),然后将公式拆开,得到四项,我们可以先预处理出前n项的j,b[j]*j,b[j]的和,然后枚举a[i],求出(a[i]>=b[j] 和 a[i]<b[j])的分界线,然后求两端的和即可。至于求分界线的方法,一种是用lower_bound求,该操作加上枚举a[i]的时间复杂度是O(nlogn),这样经过试验会超时。另外一种方法是用树状数组求,经小伙伴的测试好像也会超时······。
  不会超时的方法是除了对b排序以外对a也排个序,然后预处理出每个a[i]的边界loc[i]。这样做的时间复杂度是O(n),总的时间复杂度是O(nlogn),不会超时。
 
上代码:
 
 /*
* this code is made by sineatos
* Problem: 1174
* Verdict: Accepted
* Submission Date: 2014-08-01 12:08:56
* Time: 2488MS
* Memory: 3240KB
*/
#include <cstdio>
#include <cstring>
#include <utility>
#include <algorithm>
#define MAX 50002
#define ll long long
using namespace std; typedef pair<int,int> pii; pii a[MAX],b[MAX];
int n,m;
ll sumb[MAX],sumbj[MAX],sumj[MAX];
int loc[MAX]; inline ll Sum(int i,int r,int l){
ll sum=;
sum=(ll)a[i].first*a[i].second*(r+-l) - (ll)a[i].first*(sumj[r]-sumj[l-]) -(ll)a[i].second*(sumb[r]-sumb[l-]) + (sumbj[r]-sumbj[l-]);
return sum;
} int main()
{
ll sum;
//freopen("data.txt","r",stdin);
while(scanf("%d %d",&n,&m)!=EOF){
for(int i=;i<=n;i++){
scanf("%d",&a[i].first);
a[i].second=i;
}
for(int i=;i<=m;i++){
scanf("%d",&b[i].first);
b[i].second=i;
}
sort(a+,a+n+);
sort(b+,b+m+);
sumb[]=sumbj[]=sumj[]=;
int k=;
for(int i=;i<=n;i++){
while(k<=m && a[i].first>=b[k].first) k++;
loc[i]=k;
}
for(int i=;i<=m;i++){
sumb[i]=sumb[i-]+b[i].first;
sumbj[i]=sumbj[i-]+(ll)b[i].first*b[i].second;
sumj[i]=sumj[i-]+b[i].second;
}
sum=;
for(int i=;i<=n;i++){
int mid=loc[i];
ll p1=Sum(i,m,mid);
ll p2=Sum(i,mid-,);
sum+=p2-p1;
}
printf("%lld\n",sum);
}
return ;
}

/*Sum*/

ACDream - Sum的更多相关文章

  1. acdream Divide Sum

    Divide Sum Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitSta ...

  2. acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

    GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatis ...

  3. acdream 1154 Lowbit Sum

    先贴代码,以后再写题解... 首先,直接枚举肯定是会超时的,毕竟n就有10^9那么多... 对于每个数,我们先把它转化为二进制:例:21-->10101: 对于00001~10101,可以分为几 ...

  4. ACdream: Sum

    Sum Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticN ...

  5. acdream 1431 Sum vs Product

    Sum vs Product Time Limit: 4000/2000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) Submi ...

  6. ACdream 1431——Sum vs Product——————【dfs+剪枝】

    Sum vs Product Time Limit: 2000/1000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Others) S ...

  7. ACDream - Power Sum

    先上题目: Power Sum Time Limit: 20000/10000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) S ...

  8. ACDream - Lowbit Sum

    先上题目: C - Lowbit Sum Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others ...

  9. ACdream 1154 Lowbit Sum (数位DP)

    Lowbit Sum Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitSt ...

随机推荐

  1. /lib/dracut/hooks/shutdown/30-dm-shutdown.sh

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABVQAAAMACAIAAABEqXuoAAAgAElEQVR4nOydPWjryOK3VaZM8RYpU2 ...

  2. 7.2 高速缓冲存储器-Cache

    高速缓冲存储器:Cache.Cache的功能是提高CPU数据的输入和输出的速率.CPU的速度与主存的速度之间有巨大的差异.主存的存取时间.存取速度要比CPU的速度要慢了很多倍.为了调和它们之间的巨大速 ...

  3. 关于 node.js的request事件

    下面展示的是一个ajax一部提交的服务器端处理过程.node创建一个web服务器,并侦听8080端口.对于服务器,我们为其绑定了request事件,对于请求对象,我们为它绑定了data和end事件: ...

  4. $CF41D\ Pawn$

    \(problem\) 与这题 灰常的相似 然后内存可能过大 开个滚动数组 因为数塔问题总是 只需要上面一行的两个状态(这题就是数塔问题) 下面的代码与原题不符.(原题要输出路径)想抄的可以走了 输出 ...

  5. Linux 下 Solr的搭建与使用(建议jdk1.8以上)

    官方表示solr5之后的版本不再提供对第三方容器的支持(不提供war包了). “旧式”solr.xml格式不再支持,核心必须使用core.properties文件定义. 使用第三方容器的需要自己手动修 ...

  6. linux上搭建svn

    参照网址:http://www.cnblogs.com/LusYoHo/p/6056377.html(如何在linux下搭建svn服务)                http://www.cnblo ...

  7. Flume NG基本架构与Flume NG核心概念

    导读 Flume NG是一个分布式.可靠.可用的系统,它能够将不同数据源的海量日志数据进行高效收集.聚合.移动,最后存储到一个中心化数据存储系统中. 由原来的Flume OG到现在的Flume NG, ...

  8. Android java.lang.RuntimeException: Canvas: trying to use a recycled bitmap android.graphics.Bitmap@412d7230

    近期遇到了如标题这种错误,再次记录解决方法.本文參考帖子: http://bbs.csdn.net/topics/390196217 出现此bug的原因是在内存回收上.里面用Bitamp的代码为: t ...

  9. 完整版本的停车场管理系统源代码带服务端+手机android客户端

    该源码是停车场管理软件附带源代码 J2EE服务端+android客户端,也是一套停车场管理车辆进出的管理软,喜欢的朋友可以看看吧. 应用的后台管理主要功能介绍:1  机构管理 ,机构有从属管理< ...

  10. 移动web——bootstrap栅格系统

    基本简介 1.Bootstrap 提供了一套响应式.移动设备优先的流式栅格系统,随着屏幕或视口(viewport)尺寸的增加,系统会自动分为最多12列 2.栅格系统用于通过一系列的行(row)与列(c ...