Aura (obsolete)
This document is still good for a high level overview, with contact information, but many technical details are now obsolete; see the main Aura index for more details.
 

Project Goals

 
The goal is to produce a new desktop window manager and shell environment with modern capabilities. The UI must offer rich visuals, large-scale animated transitions and effects that can be produced only with the assistance of hardware acceleration.
 
Other constraints and goals:
  • Cross platform code, should be able to build and run on Windows (and maybe eventually other platforms), even if we don't have an initial product need for them.
  • Scalable performance characteristics depending on the target hardware capability.
  • Provide the foundation of a flexible windowing system and shell for Chrome and ChromeOS on a variety of form factors.
Notable non-goals for the initial launch of this system include:
  • Multiple monitor support. (This was added later, early 2013)
  • Software rendering mode or any kind of remote desktop capability to the device.
  • NPAPI plugin support. This will never be required. Pepper plugins only will be supported.

UI Design

 
Owner: Nicholas Jitkoff (alcor@) (UX) and Kan Liu (kanliu@) (PM)
 

Quick Chrome UI Implementation Backgrounder

 
Chrome UI for Chrome on Windows and Chrome OS is built using the Views UI framework that lives in src/views. The contents of a window is constructed from a hierarchy of views. View subclasses allow for implementation of various controls and components, like buttons and toolbars. Traditionally Chrome has used a mix of hand-rolled controls for aspects of its user interface where a custom look is desired, such as the browser toolbar and tabstrip, and native controls provided by the host platform where a more conventional look is desired, such as in dialog boxes and menus. When run on Windows, the Win32 API provides for native controls in the form of HWNDs, and on ChromeOS, the Gtk toolkit is used to provide native controls.
 
A view hierarchy is hosted within a Widget. A Widget is a cross-platform type, and relies on a NativeWidget implementation that is specific to each host environment to perform some duties. The NativeWidget implementation is actually the connection to the host environment. For example, on Windows a NativeWidgetWin wraps a HWND (via the WindowImpl class), receives Windows messages for event handling, painting, and other tasks. In the Gtk world, a NativeWidgetGtk wraps a GtkWidget and responds to signals. The NativeWidget is responsible for translating platform-specific notifications into cross platform views::Events and other types that the rest of Views code can respond to in a platform-independent fashion.
 
The Chrome UI was originally written for Windows, and so despite the relatively platform-neutral nature of the View hierarchy and much of the views code, Win32-isms did creep in. The philosophy on the Chrome team has always been "let not the perfect be the enemy of the good," so pathways to shorter-term success have been emphasized. The Mac and Desktop-Linux ports of Chrome pursued a different strategy for UI, more aggressively using the native toolkits offered on those platforms (Cocoa and Gtk), so at the start of the Chrome OS project there was still some considerable Win32 influence in Views code. Many of those Win32-isms have been augmented by ifdef'ed Gtkisms.
 
The reliance on platform widget systems has posed a problem though in that it prevents hardware acceleration of elements of the UI and arbitrary transformation of UI controls. The platform native frameworks are also peculiar in a number of ways, sharing constraints that are not relevant to desktop Chrome or Chrome OS. Before long a desire to eradicate our usage of them grew strong enough to begin work on doing so. An effort was spun up spanning several teams to start by removing Gtk usage in the Views frontend code. This has become one of the major sub-projects required for the Aura work described here.
 

Platform Native Control (aka Gtk/HWND) Elimination

 
Owner: Emmanuel Saint-Loubert-Bié (saintlou@)
 
Gtk/HWND use is pervasive. It is used everywhere from the NativeWidget implementations that host the View hierarchy down to individual dialog boxes. Here are examples of work that has been done to eliminate their use:
  • Converted the Options UI to WebUI. The Options dialog boxes were massive platform-native constructs that used many Gtk widgets. Replacing the whole thing with a WebUI implementation has meant many fewer controls.
  • Converted other dialogs to WebUI. In general, if something shows in a tab or in something resembling what could be a window.open() popup (top level window), it is a candidate for conversion to WebUI. While Options was the largest conglomeration of native controls, there is a long tail of other smaller dialogs that contribute to our reliance on Gtk.
  • Written Views-based implementations of some native controls, like Textfield. Some places do not suit conversion to WebUI - e.g. the browser frame window itself. In these cases we have to write new Views-only (often referred to as "pure views" in code) versions of controls like the Textfield.
  • Written Aura-based implementations of the RenderWidgetHostView. Traditionally the RenderWidgetHostView has been a HWND or GtkWidget, and is used as a parent for windowed NPAPI plugins. Since we are only supporting Pepper plugins going forward, we did not need a native window to parent NPAPI plugins and a synthetic implementation could be done.
While many of the major areas have been successfully tackled, this area remains a work in progress.
 

Hardware Accelerated Rendering/Compositor

 
Owner: Antoine Labour (piman@)
 
At the onset of this project Chrome was using two compositors - the compositor used by WebKit to hardware accelerate CSS transitions, and a "Browser Compositor" run in the UI thread of the browser process, used to implement Views transformations like whole-screen rotations.
 
For a number of reasons, it is desirable to unify our compositing efforts here and provide a single compositor. The primary reason is achieving acceptable performance on target hardware. It is necessary to have a single compositor and draw-pass instead of two as we have now. We would also like to unify the layer trees too at some point, although this was deemed less critical.
 
The Browser Compositor is implemented as implementations of a ui::Compositor interface, such as a GL one and a D3D one. Antoine has been proceeding by writing a new implementation that uses the WebKit-CC compositor. This way the UI can continue to use the ui::Layer API as its render target. As mentioned, we may eventually consolidate the API between UI and WebKit.
 
The compositor is a distinct component in Chrome code, consuming only gfx types, WebKit (obviously) and other low level components. In the fullness of time the WebKit compositor will be extracted from WebKit further so that we do not need to drag all of WebKit into Aura and Views.
 

Aura WM and Shell

 
Aura
 
Owner: Ben Goodger (beng@) and Scott Violet (sky@)
 
To allow us to perform large scale window transitions, we need to back Windows by compositor layers so that we can animate them without redrawing. This led to the development of a simple window type that supported an API compatible with (i.e. implementing the other side of the contract expected by) the Views NativeWidget type. We had initially tried to do this with a View-backed NativeWidget implementation (called NativeWidgetViews) called the views-desktop. However we still needed a platform-native widget (NativeWidgetWin/NativeWidgetGtk) to host the hierarchy. A big challenge was that pervasive in Chrome code is the concept of a gfx::NativeView/NativeWindow, which on Chrome OS and Windows was expected to resolve to a GtkWidget or an HWND. This assumption is also baked into NativeWidgetWin/NativeWidgetGtk and thus we were presented with many challenges parenting windows properly, since we could only ever offer the top level (desktop/screen-level window) as a parent to code that expected a NativeView, rather than a more localized (and probably more correct) window, because a views::View couldn't be a NativeView.
 
This, combined with some lingering issues with large View hierarchies led to the development of the simple aura::Window type. The aura::Window is what we consider a NativeView/NativeWindow (it typedefs thus). In the Views system, we have implemented a new NativeWidget targeting this type (NativeWidgetAura) that returns the bound aura::Window from its GetNativeView() method.
 
The aura::Window wraps a Compositor Layer. It also has a delegate which responds to events and paints to its layer.
 
aura::Windows are similar to Views, only simpler, they are a hierarchy that live within an aura::Desktop. The aura::Desktop is bound to an aura::DesktopHost, which is where the real platform-specific code lives. There is a DesktopHost that wraps an HWND and one that wraps an X window. There is no Gtk in this world. You can think of this as us having pushed the platform specific code one layer further away from Views, out to the screen edge (as far as ChromeOS is concerned). All windows within are synthetic. The DesktopHost window receives the low level platform events, cracks them to aura::Events, targets them to aura Windows, which pass them along to their delegates. On the Views side, NativeWidgetAura is a aura::Window delegate, receives the aura::Event (which it considers a platform native event), and constructs relevant views::Event types to propagate into the embedded View hierarchy.
 
Aura is responsible for the Window hierarchy, event cracking and propagation, and other basic window functionality (like focus, activation, etc).
 
Note that despite the fact that Aura is used by Views, it does not actually use Views itself. It is at a lower level of the onion. Think of it like a raw Win32 HWND or GtkWidget.
 

The Aura Shell and Chrome Integration

 
Owner: Zelidrag Hornung (zelidrag@) and David Moore (davemoore@)
 
A desktop environment is much more than just basic window types. We needed a playground to implement the higher level elements of the window manager, such as constraint-based moving and sizing, shell features such as the persistent launcher at the bottom of the screen, status areas, etc. Rather than build this directly into Chrome, which is huge and takes forever to link, we decided to build this as a separate component. Because it consists of UI components like the launcher and custom window frame Views, it would need to depend not just on Aura but also Views.
 
The product is a shell library (called aura_shell) that (eventually) we can use in Chrome when built with We also have a test runner, called aura_shell_exe. This instantiates the shell, and launches a few sample/example windows that allow us to build out and test functionality. Within the shell, models for components that would normally be populated with user data (such as apps in the launcher) come from mocked models. When instantiated in Chrome, the real data is provided.
 
The Chrome OS UI team has traditionally worked on many of these features and people from that team will contribute heavily to this effort.
 

Implementation Strategy

 
Since this is a complex project, there are several sub-efforts. The breakdown above covers the main areas: Compositor, Gtk-removal, Aura and the Aura Shell/Chrome Integration.
 
There is much work to be done, so we're pursuing a lot of it in parallel. While the two-compositor system in place at the start of the project isn't something we can put into production, it has let us start building out the Windowing system while the single compositor work proceeds. Likewise, getting a basic shell up and running with embedded Views widgets allows shell components like the launcher to be started while other elements of the window system are being designed and constructed. Similarly, Web-UI based components like the App List can be built in Chrome behind a flag independent of any of the rest of this work.
 
Since we're offering a new (native) widget system, our approach to implementing this new UI has been to consider it a new target platform for Chrome, and our work can be considered another "port".
 
You can build the code by setting use_aura=1 in your GYP_DEFINES. This should work from Linux or Windows. This switch should define everything else necessary to make the components above work.
 

Major Revision History

 
11/11/2011 - Ben Goodger and James Cook - revisions
10/5/2011 - Ben Goodger - initial revision

Chromium Graphics: Aura的更多相关文章

  1. Chromium Graphics : GPU Accelerated Compositing in Chrome

    GPU Accelerated Compositing in Chrome Tom Wiltzius, Vangelis Kokkevis & the Chrome Graphics team ...

  2. Chromium Graphics: Compositor Thread Architecture

    Compositor Thread Architecture <jamesr, enne, vangelis, nduca> @chromium.org Goals The main re ...

  3. Chromium Graphics: GPUclient的原理和实现分析之间的同步机制-Part II

    摘要:Part I探析GPUclient之间的同步问题,以及Chromium的GL扩展同步点机制的基本原理.本文将源码的角度剖析同步点(SyncPoint)机制的实现方式. 同步点机制的实现主要涉及到 ...

  4. Chromium Graphics Update in 2014(滑动)

    原创文章,转载请注明为链接原始来源对于http://blog.csdn.net/hongbomin/article/details/40897433. 摘要:Chromium图形栈在2014年有多项改 ...

  5. Chromium Graphics: GPUclient的原理和实现分析之间的同步机制-Part I

    摘要:Chromium于GPU多个流程架构的同意GPUclient这将是这次访问的同时GPU维修,和GPUclient这之间可能存在数据依赖性.因此必须提供一个同步机制,以确保GPU订购业务.本文讨论 ...

  6. Chromium Graphics: Graphics and Skia

    Graphics and Skia Chrome uses Skia for nearly all graphics operations, including text rendering. GDI ...

  7. Chromium Graphics: Video Playback and Compositor

    Video Playback and Compositor Authors: jamesr@chromium.org, danakj@chromium.org The Chromium composi ...

  8. Chromium Graphics: Multithreaded Rasterization

    Multithreaded Rasterization @nduca, @enne, @vangelis (and many others) Implementation status: crbug. ...

  9. Chromium Graphics: HW Video Acceleration in Chrom{e,ium}{,OS}

    HW Video Acceleration in Chrom{e,ium}{,OS} Ami Fischman <fischman@chromium.org> Status as of 2 ...

随机推荐

  1. 深入浅出Struts2

    Struts2简单介绍 Struts 2框架作为Struts 1.X框架的替代技术,相对Struts 1.X来说,有着本质上的改变. Struts 2框架是从WebWork框架发展而来的.Apache ...

  2. SSH Key的生成和使用(for git)

    SSH Key的生成和使用 一.总结 1.用git base生成ssh,会生成id_rsa.pub文件,还有一个私钥文件.     $ ssh-keygen -t rsa -C “youremailn ...

  3. Redis-2-对于key的通用操作

    Redis-2-对于key的通用操作 标签(空格分隔): redis del key key1 key2 作用: 删除1个或多个键 返回值: 不存在的key忽略掉,返回真正删除的key的数量 rena ...

  4. asp.net mvc5 文件下载上传

    下载:是通过点击a标签直接下载的方式,没有其他任何要求,在服务器上存在实体文件,不需要请求后台控制层 前段js: <a id="NF-DownLoad" authorize= ...

  5. C# HttpHelper万能框架实现 接口

    POST请请求是使用Http协议与请求的URL进行连接,然后再写入数据,最后关闭连接的过程 方法(1) //要Post的数据 string postdate = "a=123&c=4 ...

  6. java中三个类别加载器的关系以及各自加载的类的范围

    Java在需要使用类别的时候,才会将类别加载,Java的类别载入是由类别载入器(Class loader)来达到的,预设上,在程序启动之后,主要会有三个类别加载器:Bootstrap Loader.E ...

  7. MSSQL读取xml字符串到临时表

    DECLARE @hdoc int DECLARE @doc xml SET @doc ='<CityValueSet> <CityItem> <CityId>20 ...

  8. [转]C++ 获取文件夹下的所有文件名

    转自http://www.cnblogs.com/fnlingnzb-learner/p/6424563.html 头文件:#include<io.h> char * filePath = ...

  9. Dapper基础知识三

    在下刚毕业工作,之前实习有用到Dapper?这几天新项目想用上Dapper,在下比较菜鸟,这块只是个人对Dapper的一种总结. Dapper,当项目在开发的时候,在没有必要使用依赖注入的时候,如何做 ...

  10. 马云谈AI:未来10-15年传统制造业的痛苦将远超今天的想象

    马云谈AI:未来10-15年传统制造业的痛苦将远超今天的想象 “未来10到15年,传统制造业面临的痛苦将会远远超过今天的想象,企业如果不能从规模化.标准化向个性化和智慧化转型,将很难生存下去.” 9月 ...