Project Euler 27 Quadratic primes( 米勒测试 + 推导性质 )
题意:
欧拉发现了这个著名的二次多项式:
f(n) = n2 + n + 41
对于连续的整数n从0到39,这个二次多项式生成了40个素数。然而,当n = 40时402 + 40 + 41 = 40(40 + 1) + 41能够被41整除,同时显然当n = 41时,412 + 41 + 41也能被41整除。
随后,另一个神奇的多项式n2 − 79n + 1601被发现了,对于连续的整数n从0到79,它生成了80个素数。这个多项式的系数-79和1601的乘积为-126479。
考虑以下形式的二次多项式:
n2 + an + b, 满足|a| < 1000且|b| < 1000
其中|n|指n的模或绝对值
例如|11| = 11以及|−4| = 4
这其中存在某个二次多项式能够对从0开始尽可能多的连续整数n都生成素数,求其系数a和b的乘积。
思路:根据上面的式子 f(n) 可以进行推导几个性质:
- 当 n = 0 时 f(0) = b ,因为f(n)是素数所以 b 一定是素数
- 当 n = 1 时 f(1) = a + b + 1,因为f(n) > 0 所以 a > -b - 1
- 当 gcd(a , b) = d 且 d != 1时,一定会枚举到一个数 n' = minP(d) (代表d的最小素因数) 使得 f(n') 为合数,即当 a , b 不互质时,最多生成 minP(d) 个连续的素数。
根据这三条性质就可以优化代码,降低程序运行时间。
这个题中米勒测试没有增加二次探测,所以判断素数还是有几率出错的,虽然这个几率小的惊人,但万一非洲人呢 : )
/*************************************************************************
> File Name: euler027.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月30日 星期五 20时42分40秒
************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <inttypes.h>
#define MAX_ROUND 30
#define MAX_N 1000
int32_t prime[MAX_N + 10] = {0};
int32_t primeList[MAX_N + 10] = {0};
void Init() {
prime[1] = 1;
for (int32_t i = 2 ; i <= MAX_N ; i++) {
if (!prime[i]) {
prime[i] = i;
primeList[ ++primeList[0] ] = i;
}
for (int32_t j = 1 ; j <= primeList[0] ; j++) {
if (i * primeList[j] > MAX_N) break;
prime[i * primeList[j]] = primeList[j];
if (i % primeList[j] == 0) break;
}
}
}
int32_t quick_power(int32_t a , int32_t b , int32_t mod) {
int32_t ret = 1;
while(b) {
if (b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret % mod;
}
bool R_M_TEST(int32_t x) {
if (x <= 1) return false;
srand(time(NULL));
for (int32_t i = 0 ; i < MAX_ROUND ; i++) {
int32_t a = (rand()) % (x - 1) + 1;
if (quick_power(a , x - 1 , x) != 1) return false;
}
return true;
}
int32_t HowManyPrime(int32_t a , int32_t b) {
int32_t i = 0;
while (R_M_TEST(i * i + a * i + b)) i++;
return i;
}
int32_t gcd(int32_t a , int32_t b) {
return b == 0 ? a : gcd(b , a % b);
}
int32_t main() {
int32_t a , b , d , maxQuadraticPrime = 0 , ans , manyPrime;
Init();
for (int32_t i = 1 ; i <= primeList[0] ; i++) {
b = primeList[i];
for (a = -b - 1 ; a < MAX_N ; a++) {
if (prime[a + b + 1] != a + b + 1) continue;
d = gcd(a , b);
manyPrime = HowManyPrime(a , b);
if (d != 1 && maxQuadraticPrime >= prime[d]) continue;
if (maxQuadraticPrime < manyPrime) {
maxQuadraticPrime = manyPrime;
ans = a * b;
}
}
}
printf("ans = %d\n",ans);
return 0;
}
Project Euler 27 Quadratic primes( 米勒测试 + 推导性质 )的更多相关文章
- Project Euler 21 Distinct primes factors( 整数因子和 )
题意: 记d(n)为n的所有真因数(小于n且整除n的正整数)之和. 如果d(a) = b且d(b) = a,且a ≠ b,那么a和b构成一个亲和数对,a和b被称为亲和数. 例如,220的真因数包括1. ...
- Project Euler 47 Distinct primes factors( 筛法记录不同素因子个数 )
题意: 首次出现连续两个数均有两个不同的质因数是在: 14 = 2 × 715 = 3 × 5 首次出现连续三个数均有三个不同的质因数是在: 644 = 22 × 7 × 23645 = 3 × 5 ...
- Project Euler 37 Truncatable primes
题意:3797有着奇特的性质.不仅它本身是一个素数,而且如果从左往右逐一截去数字,剩下的仍然都是素数:3797.797.97和7:同样地,如果从右往左逐一截去数字,剩下的也依然都是素数:3797.37 ...
- Project Euler 35 Circular primes
题意:197被称为圆周素数,因为将它逐位旋转所得到的数:197/971和719都是素数.小于100的圆周素数有十三个:2.3.5.7.11.13.17.31.37.71.73.79和97.小于一百万的 ...
- Project Euler 58: Spiral primes
从一开始按以下方式逆时针旋转,可以形成一个边长为七的正方形螺旋: 一个有趣的现象是右下对角线上都有一个奇完全平方数,但是更有趣的是两条对角线上的十三个数中有八个数是素数(已经标红),也就是说素数占比为 ...
- Project Euler 41 Pandigital prime( 米勒测试 + 生成全排列 )
题意:如果一个n位数恰好使用了1至n每个数字各一次,我们就称其为全数字的.例如,2143就是一个4位全数字数,同时它恰好也是一个素数. 最大的全数字的素数是多少? 思路: 最大全排列素数可以从 n = ...
- Python练习题 047:Project Euler 020:阶乘结果各数字之和
本题来自 Project Euler 第20题:https://projecteuler.net/problem=20 ''' Project Euler: Problem 20: Factorial ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 038:Project Euler 010:两百万以内所有素数之和
本题来自 Project Euler 第10题:https://projecteuler.net/problem=10 # Project Euler: Problem 10: Summation o ...
随机推荐
- SGU - 296 - Sasha vs. Kate
上题目: 296. Sasha vs. Kate Time limit per test: 1 second(s)Memory limit: 65536 kilobytes input: standa ...
- oracle 工具:tkprof
https://docs.oracle.com/cd/B10501_01/server.920/a96533/ex_plan.htm http://blog.csdn.net/dba_waterbin ...
- 小记——Grub Rescue恢复
下面我要讲的是一个悲伤的故事 引子 电脑状况简介:两块硬盘(1HHD.1SSD),SSD上装了LINUX(40G)+WIN10(50G)的双系统,SSD剩余部分在WIN下使用装程序,HHD做仓库.LI ...
- CentOS 6.9使用sudo时出现:“...不在 sudoers 文件中,此事将被报告”的问题解决
在终端切换root账号登录 su 修改/etc/sudoers文件 visudo 找到:root ALL=(ALL) ALL,修改成自己的账号: 保存即可,按Exc,输入”:wq!“,回车.
- [jQuery]jQuery获取URL参数
// jQuery url get parameters function [获取URL的GET参数值]// <code>// var GET = $.urlGet(); //获取URL的 ...
- JAVAEE之-----MySQL分页技术(带搜索)
需求: 为什么须要採用分页技术呢?在数据库中我们查询数据的时候,须要将数据返回到显示页面.数据库中含有大量数据,所有显示在一个页面过于太多,所以我们须要採用分页技术.每一页显示不同数据. 主要解决这个 ...
- Nginx 源码安装和调优
常见web架构: LAMP =Linux+Apache+Mysql+PHP LNMP =Linux+Nginx+Mysql+PHP nginx概述: 知道:1 不知道:2 Nginx (&q ...
- 【Python学习笔记】-APP图标显示未读消息数目
以小米手机系统为例,当安装的某个APP有未读消息时,就会在该APP图标的右上角显示未读消息的数目.本文主要解说怎样用Python语言实现图标显示未读消息的数目.首先,还是要用到Python中PIL库, ...
- BNU 34990 Justice String 2014 ACM-ICPC Beijing Invitational Programming Contest
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34990 DEBUG了非常久,还是legal的推断函数写错了... 此题做法.枚举Stri ...
- luogu3093 牛奶调度
题目大意 有一些奶牛,它们能挤出不同数量的奶,要想挤它要在其所对应的最后期限前完成.一个时间点只能挤完一个奶牛.问最多能挤出多少奶? 题解 如果我们要挤一个奶牛,我们要让他越晚被挤越好,这样构成最优解 ...